Contents

(a) Acknowledgement Page i
(b) Abstract Page iii
(c) Abbreviation Page vi
(d) List of Figures Page xi
(e) List of Tables Page xv
(f) List of publications Page xvii

Chapter 1: Introduction of the general area of the study

1.1 Introduction Page 1
1.2 Aminoacyl-tRNA Synthetases (aaRSs) Page 1
1.3 Transfer RNA (tRNA) Page 2
1.4 Classification of aaRSs Page 3
1.5 Non-canonical functions of aaRSs Page 6
1.6 “aaRS-like” proteins Page 9
1.7 Paralog and ortholog proteins Page 11
1.8 Glutamyl-tRNA synthetase (GluRS) Page 11
1.9 YadB or Glutamyl-Q-tRNA^{Asp} synthetase (Glu-Q-RS) Page 17
1.10 Perspectives of the thesis Page 24

References Page 25

Chapter 2: Biophysical and thermodynamic tools used for the study

2.1 Introduction Page 38
2.2 Protein folding, unfolding and misfolding Page 38
2.3 Circular Dichroism (CD) Page 47
2.4 Fourier transform infrared spectroscopy (FTIR) Page 50
2.5 Fluorescence spectroscopy Page 52
2.6 Differential scanning calorimetry (DSC) Page 59

References Page 60
Chapter 3: Fusion with anticodon binding domain of GluRS is not sufficient to alter the substrate specificity of a chimeric Glu-Q-RS

3.1 Introduction

3.2 Materials and Methods
3.2.1 Construction of chimera protein Glu-Q-RS-CGluRS
3.2.2 Expression and Purification of the proteins, tRNA^{Glu} and tRNA^{Asp}
3.2.3 Circular Dichroism
3.2.4 Fluorescence spectroscopy
3.2.5 Differential scanning calorimetry
3.2.6 Aminoacylation assays
3.2.7 Complementation assay
3.2.8 Homology Modeling

3.3 Results
3.3.1 The domains of chimeric Glu-Q-RS-CGluRS are correctly folded
3.3.2 Glu-Q-RS is significantly more stable than NGluRS
3.3.3 The thermal transition of Glu-Q-RS-CGluRS is non-cooperative
3.3.4 Glu-Q-RS-CGluRS is unable to complement in vivo a thermosensitive E. coli GluRS strain and also cannot aminoacylate tRNA^{Glu} in vitro
3.3.5 Glu-Q-RS-CGluRS binds both tRNA^{Asp} and tRNA^{Glu}
3.3.6 Structural Model of Glu-Q-RS-CGluRS

3.4 Discussion
3.5 Concluding remarks
3.6 References

Chapter 4: Critical Role of Zinc ion on E. coli Glutamyl-Queuosine-tRNA^{Asp} Synthetase (Glu-Q-RS) Structure and Function

4.1 Introduction

4.2 Materials and Methods
4.2.1 Construction of E. coli C101S/C103S Glu-Q-RS variant
4.2.2 Determination of zinc by ED-XRF spectroscopy
4.2.3 Fluorescence spectroscopy
4.2.4 FTIR spectroscopy
4.2.5 Aminoacylation assay

4.3 Results
4.3.1 ED-XRF study
4.3.2 Aggregation study
4.3.3 The FTIR study
4.3.4 Aminoacylation assay

4.4 Discussion
4.5 Concluding remarks
References
Chapter 5: Effect of ligands on the structure of N-terminal GluRS and Glu-Q-RS

5.1 Introduction

5.2 Materials and Methods
5.2.1 Circular Dichroism
5.2.2 Aminoacylation assay
5.2.3 Proteolysis study
5.2.4 Fluorescence spectroscopy
5.2.5 Differential scanning calorimetry

5.3 Results
5.3.1 The domain of NGluRS is correctly folded and functionally active
5.3.2 Effect of small ligands (ATP and L-Glu) on the structural stability of Glu-Q-RS and NGluRS
5.3.3 Binding of cognate and non-cognate amino acids to NGluRS and Glu-Q-RS in presence or in absence of ATP and tRNAtRNA\n
5.4 Discussion
5.5 Concluding remarks

References