CONTENT

<table>
<thead>
<tr>
<th>ABBREVIATIONS</th>
<th>viii-xii</th>
</tr>
</thead>
</table>

1. INTRODUCTION

2. REVIEW OF LITERATURE

2.1 Epidemiology

2.1.1 Global epidemiology of neonatal mortality and morbidity due to sepsis

2.1.2 Epidemiology of neonatal mortality and morbidity in India due to sepsis

2.2 Classification of neonatal sepsis

2.2.1 Early onset sepsis (EOS)

2.2.2 Late onset sepsis (LOS)

2.3 Etiologic agents

2.4 Risk Factors

2.4.1 Intrinsic risk factors

2.4.1.1 Neonatal factors

2.4.1.2 Maternal factors

2.4.2 Extrinsic risk factors

2.4.3 Environmental risk factors

2.5 Clinical Manifestations

2.6 Diagnosis

2.6.1 Blood culture

2.6.2 Urine culture

2.6.3 Haematological markers

2.6.4 Biomarkers

2.6.4.1 C-reactive protein (CRP)

2.6.4.2 Procalcitonin (PCT)

2.6.4.3 Serum Amyloid A (SAA)

2.6.4.4 Liposaccharide binding protein (LBP)
2.6.4.5 Cytokines 24-25
2.6.4.6 Cell surface markers 25-26

2.7 Prevention 26
2.7.1 Before Delivery 26
2.7.2 During Delivery 26-27
2.7.3 After Delivery 27

2.8 Treatment 27-28

2.9 E. coli in neonatal sepsis 28-30
2.9.1 Clinical categories of E. coli 30
 2.9.1.1 Commensal E. coli 30-31
 2.9.1.2 Intestinal Pathogenic E. coli (IPEC) 31
 2.9.1.3 Extraintestinal Pathogenic E. coli (ExPEC) 31-33
2.9.2 Phylogrouping of E. coli 33
2.9.3 Virulence factors (VFs) of septicemic E. coli 33
 2.9.3.1 Iron acquisition system 33-35
 2.9.3.2 Secreted toxins 35-37
 2.9.3.3 Adhesins 37-39
 2.9.3.4 Secretion systems 39
 2.9.3.5 Serum resistance 40
 2.9.3.6 Genes involved in internalization in host cells 40

2.10 Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) 40-41
2.10.1 Structure of SPATEs 41-42
2.10.2 Classification of SPATEs 42-43
2.10.3 Mechanism of secretion 43-45
2.10.4 Role of SPATEs in pathogenesis 45
 2.10.4.1 Class I SPATEs 46
 2.10.4.1.1 EspP 46
 2.10.4.1.2 EspC 46-47
 2.10.4.1.3 Pet 47
 2.10.4.1.4 SigA 48
 2.10.4.1.5 Sat 48-49
 2.10.4.2 Class II SPATEs 49
 2.10.4.2.1 Vat 49
2.10.4.2.2 Tsh 49-50
2.10.4.2.3 Hbp 50
2.10.4.2.4 Pic 50-51
2.10.4.2.5 SepA 51
2.10.4.2.6 EatA 51-52

2.11 *E. coli* metalloprotease YghJ 52-54

3. **OBJECTIVES** 55

4. **MATERIALS AND METHODS** 56-86

 4.1 Reagents 56-57
 4.2 Bacterial strains 57-59
 4.3 Animals 59
 4.4 Plasmid and oligonucleotides 59-60
 4.5 Triplex PCR for phylogrouping 60-61
 4.6 PCR for profiling of virulence genes 61-62
 4.7 PCR for identification of SPATEs 62
 4.8 Agarose gel electrophoresis 63
 4.8.1 Preparation of reagents 63
 4.8.2 Procedure 63
 4.9 DNA Sequencing 63-65
 4.10 Pulsed field gel electrophoresis (PFGE) 65
 4.10.1 Preparation of reagents 65
 4.10.2 Procedure 65-66
 4.11 Animal model using suckling mice 66-68
 4.12 Protease activity assay 68
 4.12.1 Skim milk assay (SMA) 68
 4.12.2 Azocasein assay 68
 4.12.2.1 Preparation of reagents 68
 4.12.2.2 Procedure 68-69
 4.12.3 Oligopeptide substrate assay 69
 4.12.4 Gelatin zymography 69
 4.12.4.1 Preparation of reagents 69-70
4.12.4.2 Procedure

4.13 Partial purification of YghJ

4.13.1 Concentration of proteins

4.13.2 Estimation of protein concentration

4.13.3 Anion-exchange chromatography

4.13.4 Gel filtration chromatography

4.13.5 SDS-PAGE

4.13.5.1 Preparation of reagents

4.13.5.2 Preparation of resolving and stacking gels

4.13.5.3 Electrophoresis buffer

4.13.5.4 Preparation of sample buffer

4.13.5.5 Preparation of sample

4.13.5.6 Electrophoresis

4.13.5.7 Fixing, staining and destaining of gel

4.13.6 NATIVE-PAGE

4.14 Identification of protein by MS/MS peptide mapping

4.14.1 In Gel Trypsin digestion of proteins

4.14.1.1 Preparation of reagents

4.14.1.2 Procedure

4.15 Raising of antisera against YghJ

4.16 Cloning, expression and purification of YghJ

4.16.1 Isolation of genomic DNA using CTAB

4.16.1.1 Preparation of reagents

4.16.1.2 Procedure

4.16.2 Quantification of DNA and analysis of purity

4.16.3 PCR amplification of yghJ for cloning

4.16.4 Cloning of yghJ into pBAD TOPO expression vector

4.16.5 Preparation of competent cells

4.16.6 Transformation

4.16.7 Plasmid DNA isolation

4.16.8 PCR screening for confirmation of positive clone

4.16.9 Expression of cloned YghJ

4.16.10 Immunoblotting
4.16.10.1 Preparation of reagents 79-80
4.16.10.2 Procedure 80
4.16.11 Purification of rYghJ through Ni-NTA chromatography 80
4.16.11.1 Preparation of reagents 80
4.16.11.2 Procedure 81
4.16.12 Purification through Gel-filtration chromatography 81
4.17 PCR to study distribution of YghJ 81
4.18 TCA precipitation of proteins 82
4.19 Inhibition of protease activity 82
4.20 Determination of optimum pH for protease activity 82
4.21 Determination of optimum temperature for protease activity 83
4.22 Cell culture and treatment 83-84
4.23 Determination of cytokines production by ELISA 84-85
4.24 RNA extraction using TRIzol 85
4.25 Quantification of RNA and analysis of purity 85
4.26 Preparation of cDNA 86
4.27 Reverse Transcription (RT) PCR 86
4.28 Statistical analysis 86

5. RESULTS PART - A 87-102
5.1 Host clinical characteristics 87-88
5.2 Phylogenetic distribution of E. coli isolates 87,89-90
5.3 Phylogenetic distribution of virulence factors (VFs) 90-92
 among septicemic, fecal and environmental E. coli isolates
5.4 Phylogenetic distribution of SPATE and its subtypes 92-95
 among septicemic, fecal and environmental E. coli isolates
5.5 Distribution of class I and class II SPATEs among 96
 septicemic isolates
5.6 Comparison of occurrence of SPATEs among 96-97
 septicemic, fecal and environmental E. coli isolates
5.7 Comparison of occurrence of SPATEs and VFs among 97-98
 Different phylogroups of septicemic and fecal isolates
5.8 Phenotypic expression of SPATEs by skim milk assay (SMA) 98
RESULTS PART- B

5.11 Partial purification and identification of YghJ from NSEC strain EB260
 - 5.11.1 Detection of secreted protease activity from EB260
 - 5.11.1.1 AAPM pNA Oligopeptide substrate assay
 - 5.11.1.2 Gelatin zymography
 - 5.11.1.3 Azocasein assay
 - 5.11.2 Partial purification of the secreted protease
 - 5.11.3 Protein identification by MS/MS peptide mapping

5.12 Cloning, expression and purification of YghJ
 - 5.12.1 Molecular cloning of YghJ
 - 5.12.1.1 PCR amplification of YghJ
 - 5.12.1.2 Cloning and confirmation of clone
 - 5.12.2 Expression of rYghJ
 - 5.12.2.1 Induction with L-arabinose and SDS-PAGE analysis
 - 5.12.2.2 Confirmation of rYghJ expression by Immunoblot
 - 5.12.3 Purification of rYghJ from TOP10 E. coli cells
 - 5.12.3.1 Ni-NTA column chromatography
 - 5.12.3.2 Gel filtration chromatography

5.13 Characterization of rYghJ
 - 5.13.1 Effect of inhibitors on protease activity
 - 5.13.2 Effect of pH on protease activity
 - 5.13.3 Effect of temperature on protease activity

5.14 Distribution of YghJ among neonatal septicemic and fecal E. coli isolates
 - 5.14.1 Genotypic distribution of YghJ among different phylogroups of septicemic and fecal E. coli isolates
5.14.2 Phenotypic distribution of YghJ 117-118
5.14.3 Determination of association of SPATEs with YghJ 118
5.15 Role of YghJ in pathogenesis of NSEC isolate 118
 5.15.1 Cytotoxic effect of Yghj on human intestinal epithelial cell lines 118-119
 5.15.2 Induction of proinflammatory cytokines by YghJ 120-124

6. DISCUSSION 125-139

7. SUMMARY 140-142

8. REFERENCES 143-171

9. PUBLICATIONS 172