CHAPTER - 4

ON B*-CONTINUOUS AND B*-CLUSTER CONTINUOUS MULTIFUNCTIONS

4.1 INTRODUCTION:

In this chapter we introduce new notions of upper and lower B*- continuous multifunctions as well as upper and lower B*- cluster continuous multifunctions defined on a topological space X, and obtain some characterizations along with some properties of such functions in connection with B*- closed or B*-open sets.

The multifunctions considered here are defined on X and assume their values in P(Y) \ φ, where P(Y) is the power set of Y. Multifunctions are denoted by capital letters F, G, H etc.

In case of multifunctions we write simply F: X → Y instead of F: X → P(Y) \ φ.

If F: X → Y is a multifunction then for A ⊆ Y we denote F+(A) = {x ∈ X: F(x) ⊆ A} and F−(A) = {x ∈ X: F(x) ∩ A ≠ φ}. It is clear that F+(Y \ A) = X \ F+(A) and F−(Y \ A) = X \ F−(A).
4.2 THE B*-CONTINUOUS MULTIFUNCTION:

Definition 4.2.1: A multifunction \(F: X \rightarrow Y \) is lower (upper) B*-continuous at a point \(x \) if for every open sets \(U, V \) with \(x \in U \), \(F(x) \cap V \neq \emptyset \) (\(F(x) \subseteq V \)), there exists a B*-set \(B \) such that \(B \subseteq F(V) \cap U \) (\(B \subseteq F^*(V) \cap U \)).

\(F \) is B* Continuous at \(x \) if it is both lower and upper B* - continuous at \(x \).

\(F \) is lower B* Continuous, upper B* Continuous and B* Continuous over \(X \) if it is respectively so at any point \(x \).

It is clear that upper (lower) quasi-continuity implies upper (lower) B*-continuity. But the converse is not true which follows from the example below.

Example 4.2.1: Let \(X = Y = [0, 1] \) with the usual topology.

Define \(F: X \rightarrow Y \) by,

\[
F(x) = \begin{cases}
0 & \text{if } x \text{ is irrational} \\
[0, 1] & \text{if } x \text{ is rational}
\end{cases}
\]

\(F \) is not upper quasi-continuous at \(x \) if \(x \) is irrational. But \(F \) is upper B*-continuous at any irrational point \(x \).

We now give some characterisation of upper B*-continuous multifunction:

Theorem 4.2.1: For a multifunction \(F: X \rightarrow Y \) the following conditions are equivalent:

1. \(F \) is upper B*-continuous at a point \(x \in X \).
(2) For each open neighbourhood U of x and any open set V of Y with $x \in F^{*}(V)$, $F^{*}(V) \cap U$ is not nowhere dense.

(3) For each open set U containing x and each open set V of Y with $x \in F^{*}(V)$, there exists a nonempty open set W of X with $W \subset U$ such that $W \subset \operatorname{Cl}(F^{*}(V))$.

(4) For each open set V of Y with $x \in F^{*}(V)$, there exists $U_{0} \in S.O.(X, x)$ such that $U_{0} \subset \operatorname{Cl}(F^{*}(V))$.

(5) $F^{*}(V) \subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(F^{*}(V))))$, for each open set V of Y.

(6) $\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(F^{*}(A)))) \subset F^{*}(A)$, for every closed set A in Y.

Proof: (1) \Rightarrow (2) Obvious.

(2) \Rightarrow (3): From (2) it follows that for every open neighbourhood U of x and any open set V of Y with $x \in F^{*}(V)$, $F^{*}(V) \cap U$ is not nowhere dense. Hence, there exists an open set $W \subset U$, such that $W' \cap F^{*}(V) \cap U \neq \emptyset$ for every open subset W' of W. This implies that $W \subset \operatorname{Cl}(F^{*}(V))$.

(3) \Rightarrow (4): From (3) it follows that for every open neighbourhood U of x and any open set V of Y with $x \in F^{*}(V)$, there exists a nonempty open set G of X such that $G \subset U$ and $G \subset \operatorname{Cl}(F^{*}(V))$. Let V be an open set of Y containing $F(x)$. Let $U(x)$ be a family of open neighbourhoods of x. For each $U \in U(x)$, there exists a nonempty open set $G(U)$ of X such that $G(U) \subset U$ and $G(U) \subset \operatorname{Cl}(F^{*}(V))$. Set $W = \bigcup_{U} G(U)$. Then W is an open set of X, $x \in \operatorname{Cl}(W)$ and $W \subset \operatorname{Cl}(F^{*}(V))$. Now take $U_{0} = W \cup \{x\}$. Then $W \subset U_{0} \subset \operatorname{Cl}(W)$ and $U_{0} \in S.O.(X, x)$ and also $U_{0} \subset \operatorname{Cl}(F^{*}(V))$.

(4) \Rightarrow (5): Let \(V \) be any open set in \(Y \) and \(x \in F^+(V) \). Then there exists \(U \in S.O.(X,x) \) such that \(U \subseteq \text{Cl}(F^+(V)) \). Again \(x \in U \subseteq \text{Cl}(\text{Int}(U)) \), as \(U \) is semi open.

Again, \(\text{Cl}(\text{Int}(U)) \subseteq \text{Cl}(\text{Int}(\text{Cl}(F^+(V)))) \).

i.e. \(x \in \text{Cl}(\text{Int}(\text{Cl}(F^+(V)))) \). Therefore, \(F^+(V) \subseteq \text{Cl}(\text{Int}(\text{Cl}(F^+(V)))) \).

(5) \Rightarrow (6): Let \(A \) be any closed set in \(Y \). Then \(Y \setminus A \) is open.

Then, \(F'(Y \setminus A) \subseteq \text{Cl}(\text{Int}(\text{Cl}(Y \setminus F(A)))) \).

This implies, \(X \setminus F'(A) \subseteq \text{Cl}(\text{Int}(X \setminus F(A))) \)

\[= \text{Cl}(\text{Int}(X \setminus \text{Int}(F^+(A)))) \]
\[= \text{Cl}(X \setminus \text{Cl}(\text{Int}(F'(A)))) \]
\[= X \setminus \text{Int}(\text{Cl}(\text{Int}(F^+(A)))) \].

Therefore, \(\text{Int}(\text{Cl}(\text{Int}(F(A)))) \subseteq F(A) \).

(6) \Rightarrow (5): Similar.

(5) \Rightarrow (1): Let \(x \in X \) and \(U \) be any open set of \(X \) containing \(x \) and \(V \) be any open set of \(Y \) such that \(F(x) \subseteq V \). Then, \(x \in F^+(V) \subseteq \text{Cl}(\text{Int}(\text{Cl}(F(V)))) \).

Hence, \(\varnothing \neq U \cap \text{Int}(\text{Cl}(F^+(V))) = \text{Int}(U \cap \text{Cl}(F^+(V))) \subseteq \text{Cl}(U \cap F^+(V)) \).

This implies, \(\text{Cl}(U \cap F^+(V)) \neq \varnothing \) and \(U \cap F^+(V) \) is not nowhere dense.

Thus, \((U \cap F^+(V)) \cap (U \cap \text{Int}(\text{Cl}(F^+(V)))) \neq \varnothing \). \(\Rightarrow U \cap F^+(V) \cap \text{Int}(\text{Cl}(F^+(V))) \neq \varnothing \).

i.e. \(U \cap H \neq \varnothing \), where \(H = F^+(V) \cap \text{Int}(\text{Cl}(F^+(V))) \) is a pre open set [26].

Let \(B = U \cap H \). Then \(B \) is a nonempty pre open set [26] and hence is a \(B^* \)-set.

Also, \(B \subseteq (U \cap F^+(V)) \). Hence, \(F \) is upper \(B^* \)-continuous at \(x \).
Theorem 4.2.2: For a multifunction $F: X \to Y$ the following conditions are equivalent:

1) F is lower B^*-continuous at a point $x \in X$.

2) For each open neighbourhood U of x and any open set V of Y with $x \in F(V)$, $F'(V) \cap U$ is not nowhere dense.

3) For each open set U containing x and each open set V of Y with $x \in F'(V)$, there exists a nonempty open set $W \subset U$ such that $W \subset \text{Cl}(F'(V))$.

4) For each open set V of Y with $x \in F'(V)$, there exists $O \in \text{S.O.}(X, x)$ such that $O \subset \text{Cl}(F'(V))$.

5) $F'(V) \subset \text{Cl}(\text{Int}(\text{Cl}(F'(V))))$, for each open set V of Y.

6) $\text{Int}(\text{Cl}(\text{Int}(F'(A)))) \subset F'(A)$, for every closed set A in Y.

The proof is similar to theorem 4.2.1.

4.3 UPPER (LOWER) B^*-CLUSTER CONTINUOUS MULTIFUNCTION AND ITS CONVERGENCE

In this section we introduce the concept of B^*-open and B^*-closed set; and B^*-cluster continuous multifunction is defined with the help of these sets. Also we introduced the notion of upper and lower semi-uniform convergence and study some related properties.
Definition 4.3.1: Let X be a topological space and P be a subset of X. $x \in X$ is said to be B^*-cluster point of the set P if for every B^*-set B including x, $P \cap B \neq \emptyset$.

The set of all B^*-cluster points of P is called the cluster derived set of P and denoted by $\text{cls-d-} P$.

A set P is said to be a B^*-closed set, if $P = \text{cls-d-} P$.

The complement of a B^*-closed set is B^*-open.

A multifunction F is said to be lower (upper) B^*-cluster continuous if $F^-(V)$ ($F^+(V)$) is B^*-closed for every closed set V in Y.

Example 4.3.1: In the set \mathbb{R} of real numbers with usual topology, the set \mathbb{Q} of rational numbers and $\mathbb{R}\setminus \mathbb{Q}$ of irrational numbers are B^*-closed as well as B^*-open.

Example 4.3.2: The set $\mathbb{R} \setminus \{1, 2, \ldots, n\}$ is not B^*-closed as well as not B^*-open.

In what follows (Λ, \geq) is a directed set, $\{F_a\}$ is a net of multifunctions $F_a : X \rightarrow Y$, $a \in \Lambda$ and F is a multifunction on X into Y.

Definition 4.3.2: $\{F_a : a \in \Lambda\}$ is said to be upper semi-uniformly convergent to F on X if

(i) For every open set U of Y with $F^+(U) \neq \emptyset$, and for every $a \in \Lambda$ there exists $a_0 \in \Lambda$ with $a_0 \geq a$ such that $x \in F_{a_0}^+(U)$ for all $x \in F^+(U)$.

(ii) For every $x \in X$ and every open set U of Y such that $x \in F^*(U)$ there exists $a_0 \in \Lambda$ such that $x \in F_{a_0}^-(U)$ for all $a \geq a_0$.

Definition 4.3.3: $\{F_a : a \in \Lambda\}$ is said to be lower semi-uniformly convergent to F on X if

(i) For every open set U of Y with $F^-(U) \neq \emptyset$, and for every $a \in \Lambda$ there exists $a_0 \in \Lambda$ with $a_0 \geq a$ such that $x \in F_{a_0}^-(U)$ for all $x \in F^*(U)$.

(ii) For every $x \in X$ and every open set U of Y such that $x \in F^*(U)$ there exists $a_0 \in \Lambda$ such that $x \in F_{a_0}^+(U)$ for all $a \geq a_0$.

Definition 4.3.4: $\{F_a : a \in \Lambda\}$ is said to be semi-uniformly convergent to F on X if it is upper as well as lower semi-uniformly convergent to F on X.

Theorem 4.3.1: The following conditions are equivalent:

(1) F is lower B^*-cluster continuous.

(2) For each open set V of Y, $F^*(V)$ is B^*-open in X.

(3) For each $x \in X$ and for every open set V of Y, such that $x \in F^*(V)$ there is a B^*-set B in X containing x such that $B \subseteq F^*(V)$.

Proof: (1) \iff (2): F is lower B^*-cluster continuous. Let V be any open set in Y. Then $(Y \setminus V)$ is closed in Y. Then $F^-(Y \setminus V)$ is B^*-closed.
But \(F^*(V) = X \setminus F^-(Y \setminus V) \), i.e. \(F^*(V) \) is \(B^* \)-open in \(X \); and conversely.

(2) \(\Rightarrow \) (3) : Let \(x \in X \) and \(V \) be an open set in \(Y \) containing \(F(x) \). By hypothesis, \(F^*(V) \) is \(B^* \)-open in \(X \). But \(F^*(V) = X \setminus F^-(Y \setminus V) \). So, \(F^-(Y \setminus V) \) is \(B^* \)-closed in \(X \).

Obviously \(x \notin F^-(Y \setminus V) \). Therefore \(x \) is not a \(B^* \)-cluster point of \(F^-(Y \setminus V) \).

Then, there exists a \(B^* \)-set \(B \) containing \(x \), \(B \cap F^-(Y \setminus V) = \emptyset \).

\[\Rightarrow \quad F(B) \cap (Y \setminus V) = \emptyset. \Rightarrow \quad F(B) \subseteq V \Rightarrow \quad B \subseteq F^*(V). \]

(3) \(\Rightarrow \) (2) : Let \(V \) be an open set in \(Y \) and let \(x \notin F^*(Y \setminus V) \), i.e. \(F(x) \subseteq V \). Then, \(x \in F^*(V) \).

By hypothesis there exists a \(B^* \)-set \(B \) containing \(x \) such that \(B \subseteq F^*(V) \).

So, \(F(B) \cap (Y \setminus V) = \emptyset \). Hence, \(B \cap F^*(Y \setminus V) = \emptyset \).

Consequently, \(F^*(Y \setminus V) \) is \(B^* \)-closed.

But \(F^*(V) = X \setminus F^-(Y \setminus V) \) and hence \(F^*(V) \) is \(B^* \)-open.

Theorem 4.3.2: The following conditions are equivalent:

1) \(F \) is upper \(B^* \)-cluster continuous.

2) For each open set \(V \) of \(Y \), \(F^*(V) \) is \(B^* \)-open in \(X \).

3) For each \(x \in X \) and for every open set \(V \) of \(Y \), such that \(x \in F^*(V) \) there is a \(B^* \)-set \(B \) such that \(B \subseteq F^*(V) \).

Proof is similar to theorem 4.3.1.

Theorem 4.3.3: Let \(\{F_a\}_{a \in \Lambda} \) be a net of lower \(B^* \)-cluster continuous multifunctions from \(X \) to a normal space \(Y \). If \(\{F_a\}_{a \in \Lambda} \) is lower semi-uniformly convergent to a
multifunction $F: X \to Y$ such that $F(x)$ is closed for each $x \in X$, then F is lower B^*-cluster continuous.

Proof: We suppose that F be not lower B^*-cluster continuous but all F_a are lower B^*-cluster continuous. Then there exists a point $x_0 \in X$ and an open set U of Y containing $F(x_0)$ such that for every B^*-set B containing x_0, there exists $x \in B$ so that $F(x) \not\subset U$. It is evident that $x \not\in F^*(U)$.

Since $F(x)$ is closed in Y, then by the normality of Y there exists an open set V of Y such that $F(x_0) \subset V \subset \text{Cl}(V) \subset U$. Let $V_1 = Y \setminus \text{Cl}(V)$. Then, $Y \setminus U \subset V_1$.

As ${F_a}$ is a lower semi-uniformly convergent to F, there exists $a_0 \in \Lambda$ such that $x_0 \in F_a(V)$ for all $a \geq a_0$. Since $F(x) \not\subset U$ then $F(x) \cap (Y \setminus U) \neq \emptyset \Rightarrow F(x) \cap V_1 \neq \emptyset$.

Therefore, $x \in F^*(V_1)$ i.e. $F^*(V_1) \neq \emptyset$. As ${F_a}$ is lower semi-uniformly convergent to F, there exists $a_1 \in \Lambda$ with $a_1 \geq a_0$ we have $y \in F_{a_1}^{-1}(V_1)$ for all $y \in F^*(V_1)$. Hence, $x \in F_{a_1}^{-1}(V_1)$. Since $V \cap V_1 = \emptyset$, hence $F_{a_1}(x) \not\subset V$.

According to theorem 4.3.1 it follows that F_{a_1} is not lower B^*-cluster continuous, which is a contradiction. Hence, the theorem.

Theorem 4.3.4: Let ${F_a}$ be a net of upper B^*-cluster continuous multifunctions from X to a regular space Y. If ${F_a}$ is upper semi-uniformly convergent to a multifunction $F: X \to Y$, then F is upper B^*-cluster continuous.
Proof: We suppose that \(F \) be not upper \(B^* \)-cluster continuous but all \(F_a \) are upper \(B^* \)-cluster continuous. Then by theorem 4.3.2, there exists a point \(x_0 \in X \) and an open set \(U \) of \(Y \) intersecting \(F(x_0) \) such that for every \(B^* \)-set \(B \) containing \(x_0 \), there exists a point \(x \in B \) with \(F(x) \cap U = \emptyset \).

Then for each \(B^* \)-set \(B \) there exists a point \(x \in B \) so that \(x \not\in F(U) \).

Since \(F(x_0) \cap U \neq \emptyset \) let us take an arbitrary point \(z \) of \(F(x_0) \cap U \). Then by the regularity of \(Y \) there exists an open set \(V \) of \(Y \) such that \(z \in V \subset \text{Cl}(V) \subset U \). Let \(V_1 = Y \setminus \text{Cl}(V) \). Then, evidently \(x_0 \in F'(V) \).

Since \(\{F_a\}_{a \in A} \) is upper semi-uniformly convergent to \(F \), there exists \(a_0 \in A \) such that \(x_0 \in F_{a_0}^-(V) \) for all \(a \geq a_0 \). Since \(x \not\in F'(V) \), then \(x \in F'(Y \setminus V) \).

Therefore, \(x \in F'(V_1) \). Since \(\{F_a\}_{a \in A} \) is upper semi-uniformly convergent to \(F \), there exists \(a_1 \in A \) with \(a_1 \geq a_0 \) such that \(F_{a_1}^{-}(y) \subset V_1 \) for each \(y \in F'(V_1) \).

Hence, \(F_{a_1}(x) \subset V_1 \). Therefore \(x \in F_{a_1}^+(V_1) \). Since \(V \cap V_1 = \emptyset \), hence \(x \not\in F_{a_1}^{-}(V_1) \).

According to theorem 4.3.2 it follows that \(F_{a_1} \) is not upper \(B^* \)-cluster continuous, which is a contradiction. Hence the theorem.

The paper (revised according to referee’s suggestion) containing the contents of this chapter has been sent for publication in SOOCHOW JOURNAL OF MATHEMATICS.