CHAPTER 6: LIST OF FIGURES AND TABLES

List of Figures

- Fig 1.1: Global carbon dioxide budget (2002-2011)
- Fig 1.2: Carbon stock in the form of whale population in pre-industrial period
- Fig 1.3: Global carbon source/sink budget in the world’s forest
- Fig 1.4: Diagrammatic representation of forest carbon cycle
- Fig 1.5: Molecular structures of cellulose and lignin
- Fig 2.1: Remote sensing image of study sites
- Fig 2.2: Location of the selected stations in the Indian Sundarban Mangrove forest
- Fig 3.1: Images during research work
- Fig. 4.1.1: Monthly variation of biosphere-atmosphere CO₂ exchange flux
- Fig.4.1.2: Interannual variation of biosphere-atmosphere exchange of CO₂ –C and air CO₂ during the period between June, 2009 and 2011
- Fig 4.1.3: Monthly variation of litter fall in the mangrove forest
- Fig 4.1.4: Interannual variation of litter fall and soil emission during the period between June, 2009 and 2011
- Fig 4.1.5: Validation of observed value and model value
- Fig 4.1.6 Monthly variation of organic carbon in above-ground biomass (AGB), Below-ground biomass and soil organic carbon (Ms) during the period between June, 2009 and 2011
• Fig. 4.1.7: Vertical distribution of organic carbon and the variation of Eh in different seasons.

• Fig 4.1.8: Excitation and emission spectra of humic acid at pH – 7

• Fig. 4.1.9: IR Spectrum of a) HA and b) FA

• Fig 4.1.10: During September 2010-August 2011, variation of carbon sequestration rates versus density among mangroves AA (Avicennia alba), XG (Xylocarpus granatum), AR (Aegialitis rotundifolia), CD(Ceriops decandra), BG(Bruguiera gymnorrhiza), HF (Heriteira fomes), SA (Sonneratia apetala), AM (Avicennia marina)

• Fig 4.1.11: Seasonal variation of uptake/emission fluxes of different reservoirs

• Fig 4.1.12: Schematic diagram of organic stocks (Tg C in large boxes) and fluxes (Tg C a\(^{-1}\) solid straight arrow) at the Sundarbans during the study period.

• Fig 4.2.1: Seasonal variation of a) cellulose and b) lignin content in different mangrove woods species

• Fig 4.2.2 (a-g): FTIR scan of six mangrove wood species a: Cellulose standard, b: *Heriteira fomes*, c: *Bruguiera gymnorrhiza* d: *Sonneratia apetala*, e: *Xylocarpus granatum*, f: *Avicennia alba* g: *Aegialitis rotundifolia*

• Fig 4.2.3 (a-e): TGA-DSC curve of different mangrove wood species, a: *Avicennia alba* b: *Heriteira fomes*, c: *Bruguiera gymnorrhiza*, d: *Aegialitis rotundifolia*, e: *Sonneratia apetala*

• Fig 4.3.1: Spatial variation of atmospheric CO\(_2\)

• Fig 4.3.2: Diurnal variation of atmospheric CO\(_2\) (03.01.2012)

• Fig 4.3.3: Monthly variation of CO\(_2\) emission from Kolaghat thermal power plants
• Fig 4.3.4: Monthly variation of energy generation and coal consumption from Kolaghat thermal power plants.

• Fig 4.4.1: Box model of the flow of carbon between the reservoirs and representing processes in the Sundarban forest

• Fig 4.4.2: Variation of reservoirs M_F (Above ground and below ground biomass), M_S (soil) content in response to the change of CO$_2$ concentration in the boundary layer

List of Tables

• Table 1.1: Average Carbon Stocks for Various Biomes (in tons per acre)

• Table 1.2: Maximum salinity values at different stations of Hooghly estuary during pre and post-Farakka discharge

• Table 1.3: Total forest coverage and distribution in India

• Table 4.1.1: Seasonal variation of micro-meteorological parameters and atmospheric CO$_2$

• Table 4.1.2: Results of model calculation for micrometeorological constants (Aerodynamic resistance, r_a, surface layer resistance, r_s, friction velocity, u^*, exchange velocity, V_c, correction function, ψ_c, roughness height, Z_0, reciprocal of Obukhov Scale length, $1/L$, thermal diffusivity, K, CO$_2$ molecular diffusivity and surface transfer function, B^{-1}).

• Table 4.1.3: Inter-annual variation of micrometeorological and physico-chemical properties (Total inorganic nitrogen (TIN), total inorganic phosphorus (TIP), pore water salinity (S, psu) and organic carbon, OC) of soil. (mean ± standard deviation).
• Table 4.1.4: Structural parameters of mangrove tree of different size class used for allometry

• Table 4.1.5: Species wise spatial variation of above-ground and below-ground biomass along with their structural parameters and contribution to carbon storage.

• Table 4.1.6: Seasonal variations of elemental C, N and P in different mangrove body parts.

• Table 4.1.7: Total Annual growth of mangroves in five quadrates (500 m^2)

• Table 4.1.8: Seasonal variation physico-chemical properties of mangrove sediment and pore water.

• Table 4.1.9: Chemical properties of Humic, Fulvic acid and sediment characteristics.

• Table 4.1.10: Multiple regression* analysis with a stepwise variable selection. Dependent variable (AGB, kg m^-2), independent variable Salinity, (psu, S), pH, Organic carbon (% OC), Total inorganic nitrogen (μg g^-1 dry wt of sediment, TIN), Total extractable phosphate-phosphorus (μg g^-1 dry wt of sediment, TEP)

• Table 4.2.1: Variation of mangrove wood density in kg m^-3 (mean ± standard deviation) with cellulose versus lignin concentration (% of dry weight, DW) and other physicochemical parameters of eight different mangrove woods.

• Table 4.2.2: Band assignment of FTIR of six mangrove wood species.

• Table 4.2.3: Thermogravimetric data (T_i, onset temperature, T_m, maximum decomposition temperature, T_sh, temperature at shoulder, T_f, final decomposition temperature, CV, calorific value and FVI, fuel value index for the mangrove wood samples (% of means of wt. loss in parenthesis).
• Table 4.3.1: Changes in micrometeorological parameters in different seasons at two locations.

• Table 4.4.1: Regression equations between the fluxes and the reservoirs.

• Table 4.4.2: VARIMAX-rotated factor loading matrix for biomass with atmospheric CO$_2$, temperature, and soil parameters (salinity, S; T; total inorganic phosphate, TIP; total inorganic nitrogen, TIN; organic carbon, OC.)