LIST OF TABLES

<table>
<thead>
<tr>
<th>SL No</th>
<th>Table No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Table 1.3.5.1</td>
<td>Summary of flow sensors</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>Table 1.3.5.2</td>
<td>Flow meter selection Guide</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>Table 1.3.7.1</td>
<td>Types of opto-isolators</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>Table 2.1</td>
<td>Experimental data table for the modified design of current transformer with feedback resistance $R_f = 0 \Omega$</td>
<td>106</td>
</tr>
<tr>
<td>5</td>
<td>Table 2.2</td>
<td>Experimental data table for the modified design of current transformer with feedback resistance $R_f = 10 \Omega$</td>
<td>107</td>
</tr>
<tr>
<td>6</td>
<td>Table 3.1</td>
<td>Experimental data table for the modified design of potential transformer with feedback resistance $R_f = 0 \Omega$</td>
<td>123</td>
</tr>
<tr>
<td>7</td>
<td>Table 3.2</td>
<td>Experimental data table for the modified design of potential transformer with feedback resistance $R_f = 10 \Omega$</td>
<td>124</td>
</tr>
<tr>
<td>8</td>
<td>Table 3.3</td>
<td>Experimental data table for the absolute method of measurement in potential transformer ($L=0.1H$, $R_i=75\Omega$)</td>
<td>125</td>
</tr>
<tr>
<td>9</td>
<td>Table 4.1.1</td>
<td>Experimental data of modified electronic wattmeter at different power factors</td>
<td>139</td>
</tr>
<tr>
<td>10</td>
<td>Table 4.1.2</td>
<td>Experimental data for first order Butterworth low pass filter</td>
<td>144</td>
</tr>
<tr>
<td>11</td>
<td>Table 4.2.1</td>
<td>Experimental data for modified electronic wattmeter at different power factors</td>
<td>155</td>
</tr>
<tr>
<td>12</td>
<td>Table 4.2.2</td>
<td>Experimental data for energy values obtained from modified electronic wattmeter</td>
<td>156</td>
</tr>
<tr>
<td>13</td>
<td>Table 5.1</td>
<td>Experimental data for modified Schering bridge network for the measurement of tangent of loss angle of test capacitor with bridge arm components $C_1 = C_2 = 1uF$, $C_3 = C_4 = 0.01uF$, $R_1 = R_2 = 1\Omega$ and bridge sensitivity factor $= 1\Omega$</td>
<td>165</td>
</tr>
<tr>
<td>14</td>
<td>Table 6.1</td>
<td>Experimental data for output characteristics of hall probe type level transducer</td>
<td>181</td>
</tr>
<tr>
<td>15</td>
<td>Table 6.2</td>
<td>Experimental data for linearization characteristics for hall probe type level transducer</td>
<td>181</td>
</tr>
<tr>
<td>16</td>
<td>Table 6.3</td>
<td>Experimental data for PC based level indicator characteristics</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>17</td>
<td>Table 7.1</td>
<td>Experimental data table for flow transducer output characteristics</td>
<td>195</td>
</tr>
<tr>
<td>18</td>
<td>Table 7.2</td>
<td>Experimental data for hardware circuit output (final output of opto-isolator) with flow rate</td>
<td>195</td>
</tr>
<tr>
<td>19</td>
<td>Table 7.3</td>
<td>Experimental data for LabVIEW based virtual flow indicator</td>
<td>196</td>
</tr>
<tr>
<td>20</td>
<td>Table 8.1</td>
<td>Experimental data for LED-LDR characteristics</td>
<td>206</td>
</tr>
<tr>
<td>21</td>
<td>Table 8.2</td>
<td>Experimental data for multivibrator characteristics</td>
<td>206</td>
</tr>
<tr>
<td>22</td>
<td>Table 8.3</td>
<td>Experimental data for studying digital value from microcontroller program against pulse width of multivibrator output</td>
<td>207</td>
</tr>
<tr>
<td>23</td>
<td>Table 8.4</td>
<td>Experimental data for cold junction compensation characteristics</td>
<td>208</td>
</tr>
<tr>
<td>24</td>
<td>Table 8.5</td>
<td>Experimental data for temperature indicator characteristics</td>
<td>208</td>
</tr>
<tr>
<td>25</td>
<td>Table 9.1</td>
<td>Design values of feedback resistors and biasing resistors at different break points</td>
<td>216</td>
</tr>
<tr>
<td>26</td>
<td>Table 9.2</td>
<td>Experimental data table for infrared transmitter receiver based opto-isolator circuit</td>
<td>218</td>
</tr>
<tr>
<td>27</td>
<td>Table 9.3</td>
<td>Experimental data table for opto isolator characteristics after linearization</td>
<td>219</td>
</tr>
</tbody>
</table>