CHAPTER I

KENMOTSU MANIFOLDS
Chapter I
KENMOTSU MANIFOLDS

Introduction.

This chapter is divided into two parts A and B of which part A deals with Kenmotsu manifolds and part B is concerned with β-Kenmotsu manifolds.

PART A

The product of an almost contact manifold M and the real line \mathbb{R} carries a natural almost complex structure. However if one takes M to be an almost contact metric manifold and suppose that the product metric G on $M \times \mathbb{R}$ is Kaeehlerian, then the structure on M is cosymplectic [46] and not Sasakian. On the other hand, Oubina [72] pointed out that if the conformally related metric $e^{2t}G$, t being the coordinates on \mathbb{R}, is Kaeehlerian, then M is Sasakian and conversely.

In [98] Tanno classified connected almost contact metric manifolds whose automorphism groups have the maximum dimension. For such a manifold M, the sectional curvature of plane section containing ξ is a constant, say c. If $c > 0$, M is a homogeneous Sasakian manifold of constant ϕ-sectional curvature. If $c = 0$, M is the product of a line or circle with a Kaeehler manifold of constant holomorphic curvature. If $c < 0$, M is a warped product space $\mathbb{R} \times fC^n$. In [53] Kenmotsu abstracted the differential geometric properties of the third case. In particular the almost contact metric structure in this case satisfies

$$(\nabla_X \phi)Y = g(\phi X, Y)\xi - \eta(Y)\phi X \quad (I.A.i.1)$$

and an almost contact metric manifold satisfying this condition is called a Kenmotsu manifold ([50],[53]).

\footnote{The equations of the thesis are in the form (C.S.E), where C stands for chapter, S for section number and E for equation number. Thus (I.A.1.1) means the equation (1) of section 1 of part A of chapter I, (II.3.7) means the equation (3) of section 7 of chapter II etc.}
In the first section of part A we introduce globally φ−concircularly symmetric Kenmotsu manifolds. In the next section we study 3-dimensional locally φ−concircularly symmetric Kenmotsu manifold. Section 3 and 4 are devoted to study of conharmonically flat and φ-conharmonically flat Kenmotsu manifold. In the next section we study 3-dimensional Kenmotsu manifold admitting a non-null concircular vector field. In section 6 we study locally φ- conharmonically symmetric 3-dimensional Kenmotsu manifold and in section 7 we give an example of such a manifold. In the remaining sections of this chapter we study different curvature properties of Kenmotsu manifolds with respect to the quarter-symmetric metric connection.

PRELIMINARIES

Let M be a $(2n + 1)$- dimensional connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is an $(1,1)$ tensor field, ξ is a vector field, η is a 1 - form and g is a compatible Riemannian metric such that

\[
\phi^2(X) = -X + \eta(X)\xi, \eta(\xi) = 1, \phi\xi = 0, \eta\phi = 0 \quad (I.A.p.1)
\]

\[
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \quad (I.A.p.2)
\]

\[
g(X, \xi) = \eta(X) \quad (I.A.p.3)
\]

for all $X, Y \in T(M)$([11],[13], [80]).

If an almost contact metric manifold satisfies

\[
(\nabla_X \phi)Y = g(\phi X, Y)\xi - \eta(Y)\phi X, \quad (I.A.p.4)
\]

then M is called a Kenmotsu manifold [53], where ∇ is the Levi-Civita connection of g. From the above equation it follows that

\[
\nabla_X \xi = X - \eta(X)\xi, \quad (I.A.p.5)
\]

and

\[
(\nabla_X \eta)Y = g(X, Y) - \eta(X)\eta(Y). \quad (I.A.p.6)
\]

Moreover the curvature tensor R and the Ricci tensor S satisfy

\[
R(X, Y)\xi = \eta(X)Y - \eta(Y)X \quad (I.A.p.7)
\]
and
\[S(X, \xi) = -2n\eta(X). \] (I.A.p.8)

From [31] we know that for a 3-dimensional Kenmotsu manifold
\[R(X, Y)Z = \left(r + \frac{4}{2} \right) [g(Y, Z)X - g(X, Z)Y] \]
\[- (\frac{r + 8}{2}) [g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi] \]
\[+ \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y \] (I.A.p.9)

and
\[S(X, Y) = \frac{1}{2} [(r + 2)g(X, Y) - (r + 6)\eta(X)\eta(Y)] \] (I.A.p.10)

where \(S \) is the Ricci tensor of type (0,2), \(R \) is the curvature tensor of type (1,3) and \(r \) is the scalar curvature of the manifold \(M \).

In a \((2n + 1)\)-dimensional almost contact metric manifold, if \(\{e_1, ..., e_{2n}, \xi\} \) is a local orthonormal basis of vector fields, then \(\{\phi e_1, ..., \phi e_{2n}, \xi\} \) is also a local orthonormal basis. It is easy to verify that
\[\sum_{i=1}^{2n} g(e_i, e_i) = \sum_{i=1}^{2n} g(\phi e_i, \phi e_i) = 2n. \] (I.A.p.11)

\[\sum_{i=1}^{2n} g(e_i, Z)S(Y, e_i) = \sum_{i=1}^{2n} g(\phi e_i, Z)S(Y, \phi e_i) = S(Y, Z) - S(Y, \xi)\eta(Z), \] (I.A.p.12)

for \(Y, Z \in T(M) \). In particular in view of \(\eta \circ \phi = 0 \), we get
\[\sum_{i=1}^{2n} g(e_i, \phi Z)S(Y, e_i) = \sum_{i=1}^{2n} g(\phi e_i, \phi Z)S(Y, \phi e_i) = S(Y, \phi Z), \] (I.A.p.13)

for \(Y, Z \in T(M) \). If \(M \) is a Kenmotsu manifold then it is known that
\[R(X, \xi)\xi = \eta(X)\xi - X, \quad X \in T(M) \] (I.A.p.14)

and
\[S(\xi, \xi) = -2n. \] (I.A.p.15)

From (I.A.p.15) we get
\[\sum_{i=1}^{2n} S(e_i, e_i) = \sum_{i=1}^{2n} S(\phi e_i, \phi e_i) = r + 2n, \] (I.A.p.16)

where \(r \) is the scalar curvature. In a Kenmotsu manifold we also have
\[\overline{R}(\xi, Y, Z, \xi) = -g(\phi Y, \phi Z), \quad Y, Z \in T(M). \] (I.A.p.17)
Consequently
\[\sum_{i=1}^{2n} R(e_i, Y, Z, e_i) = \sum_{i=1}^{2n} \tilde{R}(\phi e_i, Y, Z, \phi e_i) = S(Y, Z) + g(\phi Y, \phi Z). \] (I.A.p.18)

Now we state the following Lemmas:

Lemma (I.A.p.1.)\[31\] A 3-dimensional Kenmotsu manifold is a manifold of constant negative curvature if and only if the scalar curvature \(r = -6 \).

Lemma (I.A.p.2.)\[31\] A 3-dimensional Kenmotsu manifold is locally \(\phi \)-symmetric if and only if the scalar curvature \(r \) is constant.

Lemma (I.A.p.3.)\[51\] Any \(\eta \)-Einstein Kenmotsu manifold of dimension \(\geq 5 \) with \(b = \text{constant} \) is Einstein.
SECTION 1

Globally ϕ-concircularly symmetric Kenmotsu manifolds

Definition I.A.1.1. A Kenmotsu manifold M is said to be globally ϕ-concircularly symmetric if the concircular curvature tensor \tilde{C} satisfies

$$\phi^2 \left(\left(\nabla_X \tilde{C} \right) (Y, Z, W) \right) = 0,$$

(I.A.1.1)

for all vector fields $X, Y, Z \in \chi(M)$.

Let us suppose that M is a globally ϕ-concircularly symmetric Kenmotsu manifold. Then by definition

$$\phi^2 \left(\left(\nabla_W \tilde{C} \right) (X, Y, Z) \right) = 0.$$

Using (I.A.p.1) we have

$$- \left(\nabla_W \tilde{C} \right) (X, Y) Z + \eta \left(\left(\nabla_W \tilde{C} \right) (X, Y) Z \right) \xi = 0.$$

From (1.4) it follows that

$$- g((\nabla_WR) (X, Y) Z, U) + \frac{dr(W)}{n} \left[g(Y, Z)g(X, U) - g(X, Z)g(Y, U) \right]
+ \eta((\nabla_WR) (X, Y) Z) \eta(U) - \frac{dr(W)}{n(n-1)} [g(Y, Z) \eta(X) - g(X, Z) \eta(Y)] \eta(U) = 0.$$

Putting $X = U = e_i$, where $\{e_i\}$, $(i = 1, 2, \ldots, n)$ is an orthonormal basis of the tangent space at each point of the manifold, and taking summation over i, we get

$$- (\nabla_WS) (Y, Z) + \frac{dr(W)}{n} g(Y, Z)
+ \eta \left(\left(\nabla_WR \right) (e_i, Y) Z \right) \eta(e_i) - \frac{dr(W)}{n(n-1)} [g(Y, Z) - \eta(Y) \eta(Z)] = 0.$$

Putting $Z = \xi$, we obtain

$$- (\nabla_WS) (Y, \xi) + \frac{dr(W)}{n} \eta(Y) + \eta \left(\left(\nabla_WR \right) (e_i, Y) \xi \right) \eta(e_i) = 0.$$

(I.A.1.2)

Now

$$\eta \left(\left(\nabla_WR \right) (e_i, Y) \xi \right) \eta(e_i) = g \left(\left(\nabla_WR \right) (e_i, Y) \xi, \xi \right) g(e_i, \xi).$$

(I.A.1.3)

$$g \left(\left(\nabla_WR \right) (e_i, Y) \xi, \xi \right) = g \left(\nabla_WR(e_i, Y) \xi, \xi \right) - g \left(R(\nabla_WE_i, Y) \xi, \xi \right)
- g \left(R(e_i, \nabla_W Y) \xi, \xi \right) - g \left(R(e_i, Y) \nabla_W \xi, \xi \right).$$
Since \(\{e_i\} \) is an orthonormal basis \(\nabla_X e_i = 0 \) and using (I.A.p.7) we find
\[
g(R(e_i, \nabla W Y) \xi, \xi) = g(\eta(e_i) \nabla W Y - \eta(\nabla W Y) e_i, \xi) \\
= \eta(e_i) \eta(\nabla W Y) - \eta(\nabla W Y) \eta(e_i) \\
= 0.
\]
As
\[
g(R(e_i, Y) \xi, \xi) + g(R(\xi, Y) e_i, \xi) = 0
\]
we have
\[
g(\nabla W R(e_i, Y) \xi, \xi) + g(R(e_i, Y) \xi, \nabla W \xi) = 0.
\]
Using this we get
\[
g((\nabla W R) (e_i, Y) \xi, \xi) = 0. \quad (I.A.1.4)
\]
By the use of (I.A.1.3) and (I.A.1.4), from (I.A.1.2) we obtain
\[
(\nabla W S) (Y, \xi) = \frac{1}{n} dr(W)\eta(Y), \quad (I.A.1.5)
\]
Putting \(Y = \xi \) in (I.A.1.5), we get \(dr(W) = 0 \). This implies \(r \) is constant. So from (I.A.1.5), we have \(\nabla W S(Y, \xi) = 0 \). This implies that
\[
S(Y, W) = (1 - n) g(Y, W). \quad (I.A.1.6)
\]
Hence we can state the following:

Theorem I.A.1.1. If a Kenmotsu manifold is globally \(\phi \)-concircularly symmetric, then the manifold is an Einstein manifold. Next suppose \(S(X, Y) = \lambda g(X, Y) \), that is, the manifold is an Einstein manifold. Then from we have
\[
\left(\nabla W \tilde{C}\right) (X, Y) Z = (\nabla W R) (X, Y) Z.
\]
Applying \(\phi^2 \) on both sides of the above equation we have
\[
\phi^2 \left(\nabla W \tilde{C}\right) (X, Y) Z = \phi^2 (\nabla W R) (X, Y) Z.
\]
Hence we can state:

Theorem I.A.1.2. A globally \(\phi \)-concircularly symmetric Kenmotsu manifold is globally \(\phi \)-symmetric.

Remark I.A.1.1. Since a globally \(\phi \)-symmetric Kenmotsu manifold is always a globally \(\phi \)-concircularly symmetric manifold, from Theorem I.A.1.2, we conclude that on a Kenmotsu manifold, globally \(\phi \)-symmetry and globally \(\phi \)-concircularly symmetry are equivalent.
SECTION 2

3-dimensional locally ϕ-concircularly symmetric Kenmotsu manifolds

Using (I.A.p.9) in (9), in a 3-dimensional Kenmotsu manifold the concircular curvature tensor is given by

$$\tilde{\mathcal{C}}(X,Y)Z = (r+4)\left[g(Y,Z)X - g(X,Z)Y\right]$$

$$-(r+6)\left[g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi \right]$$

$$+\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y$$

$$-(\frac{r}{6})\left[g(Y,Z)X - g(X,Z)Y\right]$$

Taking the covariant differentiation to the both sides of the equation (I.A.2.1), we have

$$\left(\nabla_{W}\tilde{\mathcal{C}}\right)(X,Y)Z = \frac{dr(W)}{2}\left[g(Y,Z)X - g(X,Z)Y\right]$$

$$-\frac{dr(W)}{2}\left[g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi \right]$$

$$+\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y$$

$$-(r\frac{r}{6})\left[g(Y,Z)(\nabla_{W}\eta)(X)\xi - g(X,Z)(\nabla_{W}\eta)(Y)\xi \right]$$

$$+g(Y,Z)\eta(X)(\nabla_{W}\xi) - g(X,Z)\eta(Y)(\nabla_{W}\xi)$$

$$+(\nabla_{W}\eta)(Y)\eta(Z)X + \eta(Y)(\nabla_{W}\eta)(Z)X$$

$$-(\nabla_{W}\eta)(X)\eta(Z)Y - \eta(X)(\nabla_{W}\eta)(Z)Y$$

$$-(\frac{dr(W)}{6})\left[g(Y,Z)X - g(X,Z)Y\right]$$

Now assume that X,Y and Z are horizontal vector fields. So the equation (I.A.2.2) becomes

$$\left(\nabla_{W}\tilde{\mathcal{C}}\right)(X,Y)Z = \frac{dr(W)}{3}\left[g(Y,Z)X - g(X,Z)Y\right]$$

$$-\left(r\frac{r}{6}\right)\left[g(Y,Z)(\nabla_{W}\eta)(X)\xi - g(X,Z)(\nabla_{W}\eta)(Y)\xi \right]$$

From (I.A.2.3) it follows that

$$\phi^{2}(\left(\nabla_{W}\tilde{\mathcal{C}}\right)(X,Y)Z) = -\frac{dr(W)}{3}\left[g(Y,Z)X - g(X,Z)Y\right]$$

Hence we can state the following:

Theorem I.A.2.1. A 3-dimensional Kenmotsu manifold is locally ϕ-concircularly symmetric if and only if the scalar curvature r is constant.

In [31], De and Pathak prove that
Corollary I.A.2.1. A 3-dimensional Kenmotsu manifold is locally ϕ-symmetric if and only if the scalar curvature r is constant.

Using Corollary I.A.2.1., we can state the following theorem:

Theorem I.A.2.2. A 3-dimensional Kenmotsu manifold is locally ϕ-concircularly symmetric if and only if it is locally ϕ-symmetric.

SECTION 3

Conharmonically flat Kenmotsu manifold

In this section we study conharmonically flat Kenmotsu manifold.

Definition I.A.3.1. A Kenmotsu manifold is said to be conharmonically flat if

$$g(H(X,Y)Z,W) = 0. \quad (I.A.3.1)$$

Let a $(2n + 1)$-dimensional Kenmotsu manifold M be conharmonically flat. Then using (I.A.3.1) in (16) we have

$$R(X,Y)Z = \frac{1}{2n-1}[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY]. \quad (I.A.3.2)$$

Taking $Z = \xi$ and using (I.A.p.7) and (I.A.p.8) we have

$$\eta(X)Y - \eta(Y)X = \frac{1}{2n-1}[2n\{\eta(X)Y - \eta(Y)X\} - \eta(X)QY + \eta(Y)QX]. \quad (I.A.3.3)$$

Again putting $Y = \xi$ in (I.A.3.3) we get

$$\eta(X)\xi - X = \frac{1}{2n-1}[2n\{\eta(X)\xi - X\} - \eta(X)Q\xi + QX] \quad (I.A.3.4)$$

and after simplification the above equation reduces to

$$S(X,Y) = g(X,Y) - (2n + 1)\eta(X)\eta(Y). \quad (I.A.3.5)$$

So in view of (I.A.3.5) and Lemma I.A.p.3 we state the following:

Theorem I.A.3.1. A conharmonically flat Kenmotsu manifold is an Einstein manifold.

Using Theorem I.A.3.1 in equation (I.A.3.2) we obtain the following:

Corollary I.A.3.1. A conharmonically flat Kenmotsu manifold is a manifold of constant curvature.
SECTION 4

φ-Conharmonically flat Kenmotsu manifold

In this section we study φ-conharmonically flat Kenmotsu manifolds.

Definition I.A.4.1. A Kenmotsu manifold is said to be φ-conharmonically flat if
\[g(H(\phi X, \phi Y) \phi Z, \phi W) = 0, \]
(I.A.4.1)

where \(X, Y, Z, W \in T(M) \).

Let a \((2n + 1)\)-dimensional Kenmotsu manifold \(M \) be φ-conharmonically flat. Then using (I.A.4.1) in (16) we have
\[
\begin{align*}
R(\phi X, \phi Y, \phi Z, \phi W) &= \frac{1}{2n-1} [S(\phi Y, \phi Z)g(\phi X, \phi W) \\
&- S(\phi X, \phi Z)g(\phi Y, \phi W) \\
&+ S(\phi X, \phi W)g(\phi Y, \phi Z) \\
&- S(\phi Y, \phi W)g(\phi X, \phi Z)].
\end{align*}
\]
(I.A.4.2)

Let \(\{e_1, ..., e_{2n}, \xi\} \) be a local orthonormal basis of vector fields in \(M \). Putting \(X = W = e_i \) in (I.A.4.2) and summing up from 1 to \(2n \) we have
\[
\sum_{i=1}^{2n} R(\phi e_i, \phi Y, \phi Z, \phi e_i) = \frac{1}{2n-1} \sum_{i=1}^{2n} [S(\phi Y, \phi Z)g(\phi e_i, \phi e_i) \\
&- S(\phi e_i, \phi Z)g(\phi Y, \phi e_i) \\
&+ S(\phi e_i, \phi e_i)g(\phi Y, \phi Z) \\
&- S(\phi Y, \phi e_i)g(\phi e_i, \phi Z)].
\]
(I.A.4.3)

Using (I.A.p.11), (I.A.p.12), (I.A.p.16) and (I.A.p.18) in (I.A.4.3) we get
\[
S(\phi Y, \phi Z) + g(\phi^2 Y, \phi^2 Z) = \frac{2n-2}{2n-1} S(\phi Y, \phi Z) \\
+ \frac{r+2n}{2n-1} g(\phi Y, \phi Z).
\]

that is,
\[S(\phi Y, \phi Z) = (r + 1)g(\phi Y, \phi Z). \]
(I.A.4.4)

Substituting \(Y \) by \(\phi Y \) and \(Z \) by \(\phi Z \) in (I.A.4.4) we have
\[S(\phi^2 Y, \phi^2 Z) = (r + 1)g(\phi Y, \phi Z). \]
(I.A.4.5)

Using (I.A.p.1), (I.A.p.2) and (I.A.p.8) in (I.A.4.5) we get
\[S(Y, Z) = (r + 1)g(Y, Z) - (2n + 1 + r)\eta(Y)\eta(Z). \]
(I.A.4.6)
Contacting (I.A.4.6) we have
\[r = 0. \quad \text{(I.A.4.7)} \]

In view of (I.A.4.6) and (I.A.4.7) we have the following:

Theorem I.A.4.1. A \(\phi \)-conharmonically flat Kenmotsu manifold is an \(\eta \)-Einstein manifold with vanishing scalar curvature.

SECTION 5

3-dimensional Kenmotsu manifold admitting a non-null concircular vector field

Definition I.A.5.1. A vector field \(V \) on a Riemannian manifold is said to be a concircular vector field [105] if it satisfies an equation of the form
\[\nabla_X V = \rho X \quad \text{(I.A.5.1)} \]
for all \(X \), where \(\rho \) is a scalar function. In particular if \(\rho = 0 \), then \(V \) is parallel.

We suppose that a 3-dimensional Kenmotsu manifold admits a non-null concircular vector field. Then differentiating (I.A.5.1) covariantly we get
\[\nabla_Y \nabla_X V = \rho \nabla_Y X + d\rho(X)X. \quad \text{(I.A.5.2)} \]

From (I.A.5.2) it follows that (since the torsion tensor \(T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y] = 0 \))
\[\nabla_Y \nabla_X V - \nabla_X \nabla_Y V - \nabla_{[X,Y]} V = d\rho XY - d\rho(Y)X. \quad \text{(I.A.5.3)} \]

Hence by Ricci identity we obtain from (I.A.5.3)
\[R(X,Y)V = d\rho(X)Y - d\rho(Y)X, \quad \text{(I.A.5.4)} \]
which implies that
\[\overline{R}(X,Y,V,Z) = d\rho(X)g(Y,Z) - d\rho(Y)g(X,Z), \quad \text{(I.A.5.5)} \]
where \(\overline{R}(X,Y,V,Z) = g(R(X,Y)V, Z) \).

Replacing \(Z \) by \(\xi \) in (I.A.5.5) we get
\[\eta(R(X,Y)V) = d\rho(X)\eta(Y) - d\rho(Y)\eta(X). \quad \text{(I.A.5.6)} \]
Again
\[\eta(R(X,Y)V) = \eta(Y)g(X,V) - \eta(X)g(Y,V). \] \hspace{1cm} \text{(I.A.5.7)}

From (I.A.5.6) and (I.A.5.7) we have
\[d\rho(X)\eta(Y) - d\rho(Y)\eta(X) = \eta(Y)g(X,V) - \eta(X)g(Y,V). \] \hspace{1cm} \text{(I.A.5.8)}

Putting \(X = \phi X \) and \(Y = \xi \) in (I.A.5.8), we get
\[d\rho(\phi X) = g(\phi X, V). \] \hspace{1cm} \text{(I.A.5.9)}

Substituting \(X \) by \(\phi X \) in (I.A.5.9), we obtain
\[d\rho(X) - d\rho(\xi)\eta(X) = g(X, V) - \eta(X)\eta(V). \] \hspace{1cm} \text{(I.A.5.10)}

Here \(g(X, V) \neq 0 \) for all \(X \). For, if \(g(X, V) = 0 \) for all \(X \), then \(g(V, V) = 0 \) which means that \(V \) is a null vector field. This is contradicting our assumption. Hence multiplying both sides of (I.A.5.10) by \(g(X, V) \) we get
\[d\rho(X)g(X, V) - d\rho(\xi)g(X, V)\eta(X) = g(X, V)[g(X, V) - \eta(X)\eta(V)]. \] \hspace{1cm} \text{(I.A.5.11)}

Also putting \(Z = V \) in (I.A.5.5), we get
\[d\rho(X)g(Y, V) = d\rho(Y)g(X, V). \] \hspace{1cm} \text{(I.A.5.12)}

For \(Y = \xi \), we obtain from (I.A.5.12) that
\[d\rho(X)\eta(V) = d\rho(\xi)g(X, V). \] \hspace{1cm} \text{(I.A.5.13)}

Since \(\eta(X) \neq 0 \) for all \(X \), multiplying both sides of (I.A.5.13) by \(\eta(X) \), we have
\[d\rho(X)\eta(V)\eta(X) = d\rho(\xi)\eta(X)g(X, V). \] \hspace{1cm} \text{(I.A.5.14)}

By virtue of (I.A.5.11) and (I.A.5.14) we get
\[[d\rho(X) - g(X, V)][g(X, V) - \eta(X)\eta(V)] = 0. \] \hspace{1cm} \text{(I.A.5.15)}

Hence it follows from (I.A.5.15) that
\[\text{either} \quad d\rho(X) = g(X, V) \quad \text{for all} \ X \] \hspace{1cm} \text{(I.A.5.16)}
\[\text{or} \quad g(X, V) - \eta(X)\eta(V) = 0 \quad \text{for all} \ X. \] \hspace{1cm} \text{(I.A.5.17)}
First we consider the case of (I.A.5.16). Then we obtain from (I.A.5.5)

\[\widehat{R}(X,Y,V,Z) = g(X,V)g(Y,Z) - g(Y,V)g(X,Z). \]
(I.A.5.18)

Then putting \(X = Z = e_i, \ i = 1, 2, 3 \) in (I.A.5.18) and taking summation over \(1 \leq i \leq 3 \), we get

\[S(Y,V) = -2g(Y,V). \]
(I.A.5.19)

By virtue of (I.A.p.10) and (I.A.5.19) we obtain

\[(r + 6)[g(Y,V) - \eta(Y)\eta(V)] = 0. \]
(I.A.5.20)

Since in this case \(g(Y,V) - \eta(Y)\eta(V) \neq 0 \), it follows from (I.A.5.20) that

\[r = -6. \]
(I.A.5.21)

Next, we consider case (I.A.5.17). Differentiating (I.A.5.17) covariantly along \(Z \), we get

\[(\nabla_Z\eta)(X)\eta(V) + (\nabla_Z\eta)(V)\eta(X) = 0. \]
(I.A.5.22)

Using (I.A.p.6) in (I.A.5.22), we obtain

\[g(X,Z)\eta(V) + g(V,Z)\eta(X) - 2\eta(X)\eta(Z)\eta(V) = 0. \]
(I.A.5.23)

Then putting \(X = Z = e_i, \ i = 1, 2, 3 \) in (I.A.5.23) and taking summation over \(1 \leq i \leq 3 \), we get \(\eta(V) = 0 \), which contradicts our assumption.

Therefore, by virtue of (I.A.5.21) and Lemma I.A.p.1, we can state the following:

Theorem I.A.5.1. If a 3-dimensional Kenmotsu manifold admits a non-null concircular vector field, then the manifold is a manifold of constant negative curvature.

SECTION 6

Locally \(\phi \)- conharmonically symmetric three dimensional Kenmotsu manifolds

The notion of locally \(\phi \)-symmetry was first introduced by Takahashi [95] on a Sasakian manifold. In a recent paper [29] De and Sarkar introduced the notion of locally \(\phi \)-Ricci symmetric Sasakian manifolds again. In this paper we consider a locally \(\phi \)- conharmonically symmetric 3- dimensional Kenmotsu manifolds.
Definition I.A.6.1. A three-dimensional Kenmotsu manifold is said to be locally \(\phi \)-conharmonically symmetric if the conharmonic curvature tensor \(H \) satisfies
\[
\phi^2(\nabla_w H)(X,Y)Z = 0, \quad \text{(I.A.6.1)}
\]
where \(X, Y \) and \(Z \) are horizontal vector fields.

Using (I.A.p.10) in (16), in a 3-dimensional Kenmotsu manifold the conharmonic curvature tensor is given by
\[
H(X,Y)Z = \left(\frac{\xi}{r} \right) [g(X,Z)Y - g(Y,Z)X] \\
- \frac{\xi}{r} [g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi] \\
+ \eta(Y)\xi - \eta(X)\xi. \quad \text{(I.A.6.2)}
\]

Taking the covariant differentiation to both sides of equation (I.A.6.2), we have
\[
(\nabla_w H)(X,Y)Z = \frac{dr(W)}{2} [g(X,Z)Y - g(Y,Z)X] \\
- \frac{dr(W)}{2} [g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi] \\
+ \eta(Y)\xi - \eta(X)\xi \\
- \frac{\xi}{r^2} [g(Y,Z)(\nabla_w \eta)(X)\xi - g(X,Z)(\nabla_w \eta)(Y)\xi] \\
+ g(Y,Z)\eta(X)\nabla_w \xi - g(X,Z)\eta(Y)\nabla_w \xi \\
+ (\nabla_w \eta)(Y)\xi + \eta(Y)(\nabla_w \xi) \\
- (\nabla_w \eta)(X)\xi - \eta(X)(\nabla_w \xi). \quad \text{(I.A.6.3)}
\]

Now assume that \(X, Y \) and \(Z \) are horizontal vector fields. So equation (I.A.6.3) becomes
\[
(\nabla_w H)(X,Y)Z = \frac{dr(W)}{2} [g(X,Z)Y - g(Y,Z)X] \\
- \frac{\xi}{r^2} [g(Y,Z)(\nabla_w \eta)(X)\xi - g(X,Z)(\nabla_w \eta)(Y)\xi] \\
- (\nabla_w \eta)(X)\xi - \eta(X)(\nabla_w \xi). \quad \text{(I.A.6.4)}
\]

From (I.A.6.4) it follows that
\[
\phi^2(\nabla_w H)(X,Y)Z = \frac{dr(W)}{2} [g(Y,Z)X - g(X,Z)Y]. \quad \text{(I.A.6.5)}
\]

Hence we can state the following:

Theorem I.A.6.1 A 3-dimensional Kenmotsu manifold is locally \(\phi \)-conharmonically symmetric if and only if the scalar curvature \(r \) is constant.

Using Lemma I.A.p.2., we can state the following theorem:

Theorem I.A.6.2 A 3-dimensional Kenmotsu manifold is locally \(\phi \)-conharmonically symmetric if and only if it is locally \(\phi \)-symmetric.

SECTION 7
Examples of 3-dimensional Kenmotsu manifolds

Example I.A.7.1: In [45], the authors prove that if \(R(\xi, X)\tilde{C} = 0 \) for any \(X \in \chi(M) \), then \(M \) has constant sectional curvature \(-1\). Hence the manifold is an Einstein manifold. Therefore from the definition of concircular curvature tensor we find that globally \(\phi \)-symmetry and globally \(\phi \)-concircularly symmetry are equivalent. Hence in a concircular semi-symmetric \([R, \tilde{C}] = 0\) Kenmotsu manifold globally \(\phi \)-symmetry and globally \(\phi \)-concircularly symmetry are equivalent. Thus Theorem I.A.1.2 is verified.

Example I.A.7.2: In [53], Kenmotsu proved that a conformally flat Kenmotsu manifold of dimension \(\geq 5 \) has constant sectional curvature equal to \(-1\). Hence the manifold is an Einstein manifold. Therefore by the same argument as in Example I.A.7.1, in a conformally flat Kenmotsu manifold of dimension \(\geq 5 \) globally \(\phi \)-symmetry and globally \(\phi \)-concircularly symmetry are equivalent. Thus Theorem I.A.1.2 is verified.

Example I.A.7.3: In [51], Jun, De and Pathak prove that any \(\eta \)-Einstein \([S(X, Y) = ag(X, Y) + b\eta(X)\eta(Y)]\) Kenmotsu manifold of dimension \(n \geq 5 \) with \(b = \) constant is Einstein. Hence by the similar argument as in Example I.A.7.1, in an \(\eta \)-Einstein Kenmotsu manifold of dimension \(\geq 5 \) globally \(\phi \)-symmetry and globally \(\phi \)-concircularly symmetry are equivalent. Thus Theorem I.A.1.2 is verified.

Example I.A.7.4: In [51], the authors prove that a Ricci recurrent \([\nabla S = \alpha \otimes S]\) manifold is an Einstein manifold. Hence by the similar argument as in Example I.A.7.1, in a Ricci-recurrent Kenmotsu manifold globally \(\phi \)-symmetry and globally \(\phi \)-concircularly symmetry are equivalent. Thus Theorem I.A.1.2 is verified.

Example I.A.7.5: We consider the 3-dimensional manifold \(M = \{(x, y, z) \in \mathbb{R}^3, z \neq 0\} \), where \((x, y, z)\) are standard coordinate of \(\mathbb{R}^3 \). The vector fields
\[
e_1 = z \frac{\partial}{\partial x}, \quad e_2 = z \frac{\partial}{\partial y}, \quad e_3 = -z \frac{\partial}{\partial z}
\]
are linearly independent at each point of \(M \).

Let \(g \) be the Riemannian metric defined by
\[
g(e_1, e_3) = g(e_1, e_2) = g(e_2, e_3) = 0, \\
g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1.
\]
Let η be the 1-form defined by $\eta(Z) = g(Z, e_3)$ for any $Z \in \chi(M)$.

Let ϕ be the $(1,1)$ tensor field defined by

$$
\phi(e_1) = -e_2, \quad \phi(e_2) = e_1, \quad \phi(e_3) = 0.
$$

Then using the linearity of ϕ and g, we have

$$
\eta(e_3) = 1,
$$

$$
\phi^2 Z = -Z + \eta(Z)e_3,
$$

$$
g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W),
$$

for any $Z, W \in \chi(M)$.

Then for $e_3 = \xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to metric g. Then we have

$$
[e_1, e_3] = e_1 e_3 - e_3 e_1
= z \frac{\partial}{\partial x}(-z \frac{\partial}{\partial z}) - (-z \frac{\partial}{\partial z})(z \frac{\partial}{\partial x})
= -z^2 \frac{\partial^2}{\partial x \partial z} + z^2 \frac{\partial^2}{\partial z \partial x} + z \frac{\partial}{\partial x}
= e_1.
$$

Similarly

$$
[e_1, e_2] = 0 \quad \text{and} \quad [e_2, e_3] = e_2.
$$

The Riemannian connection ∇ of the metric g is given by

$$
2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y)
- g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]), \quad \text{(I.A.7.1)}
$$

which known as Koszul’s formula.

Using (I.A.7.1) we have

$$
2g(\nabla_{e_1} e_3, e_1) = -2g(e_1, -e_1) = 2g(e_1, e_1). \quad \text{(I.A.7.2)}
$$

Again by (I.A.7.1)

$$
2g(\nabla_{e_1} e_3, e_2) = 0 = 2g(e_1, e_2) \quad \text{(I.A.7.3)}
$$

and

$$
2g(\nabla_{e_1} e_3, e_3) = 0 = 2g(e_1, e_3). \quad \text{(I.A.7.4)}
$$
From (I.A.7.2), (I.A.7.3) and (I.A.7.4) we obtain

$$2g(\nabla e_1 e_3, X) = 2g(e_1, X),$$

for all $X \in \chi(M)$.

Thus

$$\nabla e_1 e_3 = e_1.$$

Therefore, (I.A.7.1) further yields

$$\nabla e_1 e_3 = e_1, \quad \nabla e_1 e_2 = 0, \quad \nabla e_2 e_1 = -e_3,$$

$$\nabla e_2 e_3 = e_2, \quad \nabla e_2 e_2 = e_3, \quad \nabla e_3 e_1 = 0,$$

$$\nabla e_3 e_3 = 0, \quad \nabla e_3 e_2 = 0, \quad \nabla e_2 e_1 = 0. \quad (I.A.7.5)$$

From the above it follows that the manifold satisfies $\nabla X \xi = X - \eta(X) \xi$, for $\xi = e_3$. Hence the manifold is a Kenmotsu manifold. It is known that

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z. \quad (I.A.7.6)$$

With the help of the above results and using (I.A.7.6), it can be easily verified that

$$R(e_1, e_2)e_3 = 0, \quad R(e_2, e_3)e_3 = -e_2, \quad R(e_1, e_3)e_3 = -e_1,$$

$$R(e_1, e_2)e_2 = -e_1, \quad R(e_2, e_3)e_2 = e_3, \quad R(e_1, e_3)e_2 = 0,$$

$$R(e_1, e_2)e_1 = e_2, \quad R(e_2, e_3)e_1 = 0, \quad R(e_1, e_3)e_1 = e_3.$$

From the above expressions of the curvature tensor R we obtain

$$S(e_1, e_1) = g(R(e_1, e_2)e_2, e_1) + g(R(e_1, e_3)e_3, e_1)$$

$$= -2.$$

Similarly, we have

$$S(e_2, e_2) = S(e_3, e_3) = -2.$$

Therefore,

$$r = S(e_1, e_1) + S(e_2, e_2) + S(e_3, e_3) = -6.$$

We note that here r is constant. Thus Theorem I.A.2.1. and Theorem I.A.6.1. are verified.

SECTION 8

η- parallel Ricci tensor with respect to the quarter-symmetric metric connection

Definition I.A.8.1. The Ricci tensor S of a Kenmotsu manifold is said to be η-parallel if it satisfies

$$(\nabla_X S)(\phi Y, \phi Z) = 0,$$

(I.A.8.1)

for all vector fields X, Y and Z.

Let M be a 3-dimensional Kenmotsu manifold. From [92] we know that for a quarter-symmetric metric connection in a Kenmotu manifold

$$\tilde{\nabla}XY = \nabla XY - \eta(X)\phi Y$$

(I.A.8.2)

and

$$\tilde{S}(Y, Z) = S(Y, Z) + g(\phi Y, Z)$$

(I.A.8.3)

where $\tilde{\nabla}$ be a quater-symmetric metric connection in M and \tilde{S} is the Ricci tensor of the connection $\tilde{\nabla}$.

We know that

$$(\tilde{\nabla}_X \tilde{S})(Y, Z) = \tilde{\nabla}_X \tilde{S}(Y, Z)$$

(I.A.8.4)

Using (I.A.8.2) and (I.A.8.3) from (I.A.8.4), we have

$$(\tilde{\nabla}_X \tilde{S})(Y, Z) = \nabla XS(Y, Z) + \nabla X g(\phi Y, Z) - S(\nabla XY, Z)$$

+ $\eta(X)S(\phi Y, Z) - g(\phi \nabla_X Y, Z)$

+ $\eta(X)g(\phi^2 Y, Z) - S(Y, \nabla_X Z)$

+ $\eta(X)S(Y, \phi Z) - g(\phi Y, \nabla_X Z)$

+ $\eta(X)g(\phi Y, \phi Z).$

(I.A.8.5)

Now using (I.A.p.1),(I.A.8.5) yields

$$(\tilde{\nabla}_X \tilde{S})(\phi Y, \phi Z) = (\nabla X S)(\phi Y, \phi Z)$$

+ $\eta(X)[S(\phi Y, Z) + S(\phi Z, Y)]$

+ $\eta(Z)g(\phi X, \phi Y) - \eta(Y)g(\phi X, \phi Z).$

(I.A.8.6)

In (I.A.8.6) replacing Y by ϕY, Z by ϕZ and using (I.A.p.1) we get

$$(\tilde{\nabla}_X \tilde{S})(\phi Y, \phi Z) = (\nabla X S)(\phi Y, \phi Z)$$

+ $\eta(X)[-S(\phi Y, \phi Z) + \eta(Y)S(\xi, \phi Z)]$

+ $\eta(Z)S(\phi Y, Z) + \eta(Z)S(\phi Y, \xi)].$

(I.A.8.7)
Now using (I.A.p.10),(I.A.8.7) yields
\[
(\tilde{\nabla}_X \tilde{S})(\phi Y, \phi Z) = (\nabla_X S)(\phi Y, \phi Z).
\]
(I.A.8.8)

Hence we can state the following:

Theorem I.A.8.1. In a 3-dimensional Kenmotsu manifold, η-parallelity of the Ricci tensor with respect to the quater-symmetric metric connection and the Levi-Civita connection are equivalent.

SECTION 9

Cyclic Parallel Ricci tensor with respect to the quarter-symmetric metric connection

A.Gray [41] introduced two classes of Riemannian manifolds determined by the covariant differentiation of the Ricci tensor. The class A consisting of all Riemannian manifolds whose Ricci tensor S is a Codazzi tensor, that is, $(\nabla_X S)(Y, Z) = (\nabla_Y S)(X, Z)$.

The class B consisting of all Riemannian manifolds whose Ricci tensor is cyclic parallel, that is, $(\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) + (\nabla_Z S)(X, Y) = 0$.

Let M be a 3-dimensional Kenmotsu manifold. Then its Ricci tensor \tilde{S} is given by (I.A.8.3). Now using (I.A.8.6) we have

\[
(\tilde{\nabla}_X \tilde{S})(Y, Z) + (\tilde{\nabla}_Y \tilde{S})(Z, X) + (\tilde{\nabla}_Z \tilde{S})(X, Y)
= (\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) + (\nabla_Z S)(X, Y) + \eta(X)[S(\phi Y, Z) + S(Y, \phi Z)]
+ \eta(Y)[S(\phi Z, X) + S(Z, \phi X)] + \eta(Z)[S(\phi X, Y) + S(X, \phi Y)].
\]
(I.A.9.1)

Now using (I.A.p.10),(I.A.9.1) yields

\[
(\tilde{\nabla}_X \tilde{S})(Y, Z) + (\tilde{\nabla}_Y \tilde{S})(Z, X) + (\tilde{\nabla}_Z \tilde{S})(X, Y)
\]
(I.A.9.2)

Hence we can state the following:

Theorem I.A.9.1 Cyclic parallel Ricci tensor of a 3-dimensional Kenmotsu manifold with respect to the quater-symmetric metric connection and the Levi-Civita connection are equivalent.
SECTION 10

Locally ϕ-Symmetric Kenmotsu manifolds with respect to
the quarter-symmetric metric connection

Definition I.A.10.1. A Sasakian manifold is said to be locally ϕ-symmetric if

$$\phi^2(\nabla_W R)(X,Y)Z = 0$$ \hspace{1cm} (I.A.10.1)

for all vector fields W, X, Y, Z orthogonal to ξ. This notion was introduced for Sasakian manifolds by Takahashi [95].

Analogous to the definition of ϕ-symmetric Sasakian manifold with respect to the Riemannian connection, we define locally ϕ-symmetric Kenmotsu manifold with respect to the quarter-symmetric metric connection by

$$\phi^2(\tilde{\nabla}_W \tilde{R})(X,Y)Z = 0,$$ \hspace{1cm} (I.A.10.2)

for all vector fields W, X, Y, Z orthogonal to ξ.

Using (I.A.10.2) we can write

$$(\tilde{\nabla}_W \tilde{R})(X,Y)Z = (\nabla_W \tilde{R})(X,Y)Z - \eta(W)\phi \tilde{R}(X,Y)Z.$$ \hspace{1cm} (I.A.10.3)

From [13] we know that for a Kenmotsu manifold

$$\tilde{R}(X,Y)Z = R(X,Y)Z + \eta(X)g(\phi Y, Z)\xi$$

$$-\eta(Y)g(\phi X, Z)\xi - \eta(X)\eta(Z)\phi Y$$

$$+\eta(Y)\eta(Z)\phi X.$$ \hspace{1cm} (I.A.10.4)

Using (I.A.p.9),(I.A.10.4) yields

$$\tilde{R}(X,Y)Z = \frac{\theta+\delta}{2}[g(Y, Z)X - g(X, Z)Y]$$

$$-\frac{\theta-\delta}{2}[g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi]$$

$$+\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y$$

$$+\eta(X)g(\phi Y, Z)\xi$$

$$-\eta(Y)g(\phi X, Z)\xi - \eta(X)\eta(Z)\phi Y$$

$$+\eta(Y)\eta(Z)\phi X.$$ \hspace{1cm} (I.A.10.5)

Now differentiating (I.A.10.5) with respect to W and using (I.A.p.4), we get from
\((\tilde{\nabla}_W \tilde{R})(X, Y)Z = \frac{dr(W)}{2} [g(Y, Z)X - g(X, Z)Y] \)

\(- \frac{dr(W)}{2} [g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi] + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y \)

\(- \frac{(r+6)}{2} [g(Y, Z)(\nabla W\eta)(X)\xi - g(X, Z)(\nabla W\eta)(Y)\xi] + g(Y, Z)\eta(X)\nabla W\xi - g(X, Z)\eta(Y)\nabla W\xi \)

\((- (\nabla W\eta)(Y)\eta(Z)X + \eta(Y)(\nabla W\eta)(Z)X \)

\(- (\nabla W\eta)(X)\eta(Z)Y - \eta(X)(\nabla W\eta)(Z)Y \)

\(+ (\nabla W\eta)(X)g(\phi Y, Z)\xi + \eta(X)g(\phi Y, Z)W \)

\(- \eta(X)g(\phi Y, Z)\eta(W)\xi - (\nabla W\eta)(Y)g(\phi X, Z)\xi \)

\(- \eta(Y)g(\phi X, Z)W + \eta(Y)g(\phi X, Z)\eta(W)\xi \)

\(- g(W, X)\eta(Z)\phi Y + 2\eta(W)\eta(X)\eta(Z)\phi Y \)

\(- \eta(X)g(W, Z)\phi Y - \eta(X)\eta(Z)g(\phi W, Y)\xi \)

\(+ g(W, Y)\eta(Z)\phi X - 2\eta(W)\eta(Y)\eta(Z)\phi X \)

\(+ \eta(Y)g(W, Z)\phi X + \eta(Y)\eta(Z)g(\phi W, X)\xi \)

\(- \eta(W)\phi \tilde{R}(X, Y)Z. \)

\((\text{I.A.10.3})\)

Now taking \(W, X, Y, Z \) are horizontal vector fields, that is, \(W, X, Y, Z \) are orthogonal to \(\xi \), then we get from the above

\(\phi^2(\tilde{\nabla}_W \tilde{R})(X, Y)Z = - \frac{dr(W)}{2} [g(Y, Z)X - g(X, Z)Y]. \)

\((\text{I.A.10.7})\)

Hence we can state the following:

Theorem I.A.10.1 A 3-dimensional Kenmotsu manifold is locally \(\phi \)-symmetric with respect to the.quarter-symmetric connection if and only if the scalar curvature \(r \) is constant.
PART B

β-Kenmotsu manifolds

An almost contact metric manifold satisfying the condition (I.A.i.1) is called a Kenmotsu manifold ([50],[53]). Again one has the more general notion of a β-Kenmotsu structure [50] which may be defined by

\[(\nabla_X\phi)Y = \beta(g(\phi X,Y)\xi - \eta(Y)\phi X)\] (I.B.i.1)

where β is a non-zero constant. From the condition one may readily deduce that

\[\nabla_X\xi = \beta(X - \eta(X)\xi).\] (I.B.i.2)

Kenmotsu manifolds appear as examples of β-Kenmotsu manifolds, with β = 1. β-Kenmotsu manifolds have been studied by several authors such as Matamba [100], Janssens, and Vanhecke [50] and many others.

In the classification of Gray and Hervella [42] of almost Hermitian manifolds there appears a class, \(W_4\), of Hermitian manifolds which are closely related to locally conformally Kaehler manifolds. An almost contact metric structure \((\phi, \xi, \eta, g)\) on \(M\) is trans-Sasakian [72] if \((M \times \mathbb{R}, J, G)\) belongs to the class \(W_4\), where \(J\) is the almost complex structure on \(M \times \mathbb{R}\) defined by

\[J(X, f \frac{d}{dt}) = (\phi X - f \xi, \eta(X)\frac{d}{dt}),\] for all vector fields \(X\) on \(M\), \(f\) is a smooth function on \(M \times \mathbb{R}\) and \(G\) is the product metric on \(M \times \mathbb{R}\). This may be expressed by the condition [16]

\[(\nabla_X\phi)Y = \alpha(g(X,Y)\xi - \eta(Y)X) + \beta(g(\phi X,Y)\xi - \eta(Y)\phi X)\] (I.B.i.3)

for smooth functions \(\alpha\) and \(\beta\) on \(M\). Hence we say that the trans-Sasakian structure is of type \((\alpha, \beta)\). In particular, it is normal and it generalizes both \(\alpha\)-Sasakian and \(\beta\)-Kenmotsu structures. From the formula one easily obtains

\[\nabla_X\xi = -\alpha(\phi X) + \beta(X - \eta(X)\xi).\] (I.B.i.4)

Hence a trans-Sasakian structure of type \((\alpha, \beta)\) with \(\alpha, \beta \in \mathbb{R}\) and \(\alpha = 0\) is a \(\beta\)-Kenmotsu structure.

In the first section of this chapter we introduce globally \(\phi\)–quasiconformally symmetric \(\beta\)-Kenmotsu manifolds. In the next section we study 3-dimensional locally
ϕ–quasiconformally symmetric β-Kenmotsu manifold and in section 3 we study second order parallel tensor. Section 4 deals with the study of Ricci solitons. In the last section we give some examples of such a manifold.

PRELIMINARIES

Let M be a connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is an $(1,1)$ tensor field, ξ is a vector field, η is a 1-form and g is a compatible Riemannian metric such that

$$\phi^2(X) = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad \phi\xi = 0, \quad \eta\phi = 0 \quad \text{(I.B.p.1)}$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \quad \text{(I.B.p.2)}$$

$$g(X, \xi) = \eta(X) \quad \text{(I.B.p.3)}$$

for all $X, Y \in T(M)$. If an almost contact metric manifold satisfies

$$(\nabla_X \phi) Y = \beta(g(\phi X, Y)\xi - \eta(Y)\phi X), \quad \text{(I.B.p.4)}$$

then M is called a β-Kenmotsu manifold, where ∇ is the Levi-Civita connection of g. From the above equation it follows that

$$\nabla_X \xi = \beta(X - \eta(X)\xi), \quad \text{(I.B.p.5)}$$

and

$$(\nabla_X \eta) Y = \beta(g(X, Y) - \eta(X)\eta(Y)). \quad \text{(I.B.p.6)}$$

Moreover the curvature tensor R and the Ricci tensor S satisfy

$$R(X, Y)\xi = \beta(\eta(X)Y - \eta(Y)X) \quad \text{(I.B.p.7)}$$

and

$$S(X, \xi) = -\beta(n - 1)\eta(X). \quad \text{(I.B.p.8)}$$
SECTION 1
Globally ϕ-quasiconformally symmetric β-Kenmotsu manifolds

Definition I.B.1.1. A β-Kenmotsu manifold M is said to be globally ϕ-quasiconformally symmetric if the quasi-conformal curvature tensor C^* satisfies

$$\phi^2((\nabla_X C^*)(Y, Z) W) = 0,$$ (I.B.1.1)

for all vector fields $X, Y, Z \in \chi(M)$.

It is well-known that if the Ricci tensor S for the manifold is of the form $S(X, Y) = \lambda g(X, Y)$, where λ is a constant and $X, Y \in \chi(M)$, then the manifold is called an Einstein manifold.

Let us suppose that M is a globally ϕ-quasiconformally symmetric β-Kenmotsu manifold. Then by definition

$$\phi^2((\nabla_W C^*)(X, Y) Z) = 0,$$

Using (I.B.p.1) we have

$$-(\nabla_W C^*)(X, Y) Z + \eta ((\nabla_W C^*)(X, Y) Z) \xi = 0.$$

From (11) it follows that

$$-bg(Y, Z) g((\nabla_W Q) X, U) + bg(X, Z) g((\nabla_W Q) Y, U)$$

$$+\frac{1}{n} \hat{d}r(W) \left[\frac{a}{n-1} + 2b \right] (g(Y, Z) g(X, U) - g(X, Z) g(Y, U))$$

$$+an ((\nabla_W R)(X, Y) Z) \eta(U)$$

$$+b(\nabla_W S)(Y, Z) \eta(U) \eta(X) - b(\nabla_W S)(X, Z) \eta(U) \eta(Y)$$

$$+bg(Y, Z) \eta ((\nabla_W Q) X) \eta(U) - bg(X, Z) \eta ((\nabla_W Q) Y) \eta(U)$$

$$-\frac{1}{n} \hat{d}r(W) \left[\frac{a}{n-1} + 2b \right] (g(Y, Z) \eta(X) - g(X, Z) \eta(Y)) \eta(U) = 0$$

Putting $X = U = e_i$, where $\{e_i\}, (i = 1, 2, ..., n)$ is an orthonormal basis of the tangent space at each point of the manifold, and taking summation over i, we get

$$-(a + nb - 2b) (\nabla_W S)(Y, Z) - \{ bg ((\nabla_W Q) e_i, e_i) - \frac{n-1}{n} \hat{d}r(W) \left(\frac{a}{n-1} + 2b \right) \} g(Y, Z) + bg((\nabla_W Q) Y, Z)$$

$$-bn ((\nabla_W Q) e_i, e_i) \eta(e_i) + \frac{1}{n} \hat{d}r(W) \left(\frac{a}{n-1} + 2b \right) \} g(Y, Z) + bg((\nabla_W Q) Y, Z)$$

$$+an ((\nabla_W R)(e_i, Y) Z) \eta(e_i) - b(\nabla_W S)(\xi, Z) \eta(Y) - bn ((\nabla_W Q) Y) \eta(Z)$$

$$+\frac{1}{n} \hat{d}r(W) \left(\frac{a}{n-1} + 2b \right) \} \eta(Y) \eta(Z) = 0.$$
Putting $Z = \xi$, we obtain

$$-(a + nb - 2b) (\nabla_W S) (Y, \xi) - \eta(Y) \{ bdr(W) - \frac{n-1}{n} dr(W) \left(\frac{a}{n-1} + 2b \right) - b\eta((\nabla_W Q) e_i) \eta(e_i) + \ldots \} = 0.$$

Putting $Y = \xi$ in (I.B.1.6) we get $dr(W) = 0$. This implies r is constant. So from (I.B.1.6), we have

$$(\nabla_W S) (Y, \xi) = 0. \quad \text{(I.B.1.2)}$$

Now

$$\eta((\nabla_W Q) e_i) \eta(e_i) = g((\nabla_W Q) e_i, \xi) = \eta((\nabla_W Q) \xi) = g(Q\phi X, \xi) = S(\phi X, \xi) = 0. \quad \text{(I.B.1.3)}$$

$$\eta((\nabla_W R) (e_i, Y) \xi) \eta(e_i) = g((\nabla_W R) (e_i, Y) \xi, \xi) \eta(e_i) = 0. \quad \text{(I.B.1.4)}$$

Since $\{e_i\}$ is an orthonormal basis $\nabla_X e_i = 0$ and using (I.B.p.7) we find

$$g(R(e_i, \nabla_W Y) \xi, \xi) = \beta(\eta(e_i) \nabla_W Y - \eta(\nabla_W Y) e_i, \xi)$$

$$\quad = \beta(\eta(e_i) \eta(\nabla_W Y) - \eta(\nabla_W Y) \eta(e_i))$$

$$\quad = 0.$$

As

$$g(R(e_i, Y) \xi, \xi) + g(R(\xi, \xi) Y, e_i) = 0$$

we have

$$g((\nabla_W R) (e_i, Y) \xi) + g(R(e_i, Y) \xi, \nabla_W Y) = 0.$$

Using this we get

$$g((\nabla_W R) (e_i, Y) \xi, \xi) = 0. \quad \text{(I.B.1.5)}$$

By the use of (I.B.1.3), (I.B.1.4) and (I.B.1.5), from (I.B.1.2) we obtain

$$(\nabla_W S) (Y, \xi) = \frac{1}{n} dr(W) \eta(Y), \quad \text{(I.B.1.6)}$$

since $a + (n - 2)b \neq 0$. Because if $a + (n - 2)b = 0$ then from (10), it follows that $C^* = aC$. So we can not take $a + (n - 2)b = 0$. Putting $Y = \xi$ in (I.B.1.6) we get $dr(W) = 0$. This implies r is constant. So from (I.B.1.6), we have

$$(\nabla_W S) (Y, \xi) = 0.$$
Using (I.B.p.8), this implies

\[S(Y, W) = \lambda g(Y, W), \quad (I.B.1.7) \]

where \(\lambda = -\beta(n - 1) \). Hence we can state the following:

Theorem I.B.1.1. If a \(\beta \)-Kenmotsu manifold is globally \(\phi \)-quasiconformally symmetric, then the manifold is an Einstein manifold.

Next suppose \(S(X, Y) = \lambda g(X, Y) \), i.e. \(QX = \lambda X \). Then from (10) we have

\[
C^*(X, Y)Z = aR(X, Y)Z \\
+ \left[2\delta \lambda - \frac{\ell}{n} \left(\frac{a}{n-1} + 2\delta \right) \right] [g(Y, Z)X - g(X, Z)Y],
\]

which gives us

\[
(\nabla_W C^*) (X, Y)Z = a (\nabla_W R) (X, Y)Z.
\]

Applying \(\phi^2 \) on both sides of the above equation we have

\[
\phi^2 (\nabla_W C^*) (X, Y)Z = a \phi^2 (\nabla_W R) (X, Y)Z.
\]

Hence we can state:

Theorem I.B.1.2. A globally \(\phi \)-quasiconformally symmetric \(\beta \)-Kenmotsu manifold is globally \(\phi \)-symmetric.

Remark I.B.1.1. Since a globally \(\phi \)-symmetric \(\beta \)-Kenmotsu manifold is always a globally \(\phi \)-quasiconformally symmetric manifold, from Theorem I.B.1.2 we conclude that on a \(\beta \)-Kenmotsu manifold, globally \(\phi \)-symmetry and globally \(\phi \)-quasiconformally symmetry are equivalent.

SECTION 2

3-dimensional locally \(\phi \)-quasiconformally symmetric \(\beta \)-Kenmotsu manifolds

Let us consider a 3-dimensional \(\beta \)-Kenmotsu manifold. It is known that the conformal curvature tensor vanishes identically in the 3-dimensional Riemannian manifold. Thus we find

\[
R(X, Y)Z = g(Y, Z)QX - g(X, Z)QY + S(Y, Z)X - S(X, Z)Y \\
- \frac{\ell}{2} [g(Y, Z)X - g(X, Z)Y], \quad (I.B.2.1)
\]

where Q is the Ricci operator, that is, $g(QX,Y) = S(X,Y)$ and r is the scalar curvature of the manifold.

Putting $Z = \xi$ in (I.B.2.1) and using (I.B.p.8) we have

$$\eta(Y)QX - \eta(X)QY = \left(\frac{r}{2} + \beta\right)[\eta(Y)X - \eta(X)Y]. \quad \text{(I.B.2.2)}$$

Putting $Y = \xi$ in (I.B.2.2) and using (I.B.2.1) and (I.B.p.8), we get

$$QX = \frac{1}{2}(r + 2\beta)X - (r + 6\beta)\eta(X)\xi, \quad \text{(I.B.2.3)}$$

that is,

$$S(X,Y) = \frac{1}{2}(r + 2\beta)g(X,Y) - (r + 6\beta)\eta(X)\eta(Y). \quad \text{(I.B.2.4)}$$

Using (I.B.2.3) in (I.B.2.1), we get

$$R(X,Y)Z = (r + 4\beta)[g(Y,Z)X - g(X,Z)Y] - (r + 6\beta)[g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi - g(X,Z)\eta(X)\eta(Y)Z]. \quad \text{(I.B.2.5)}$$

Putting (I.B.2.3), (I.B.2.4) and (I.B.2.5) into (10) we have

$$C^*(X,Y)Z = (a + b)(r + 6\beta)[\frac{1}{6}g(Y,Z)X - g(X,Z)Y] \quad \text{(I.B.2.6)}$$

Thus we have

Lemma I.B.2.1. Let M be a 3-dimensional β-Kenmotsu manifold.

If $a + b = 0$ *or* $r = -6\beta$, *then the quasi-conformal curvature tensor vanishes identically.*

Next, we assume that $a + b \neq 0$ or $r \neq -6\beta$. Taking the covariant differentiation of (I.B.2.6), we get

$$(\nabla_W C^*)(X,Y)Z = \frac{dr(W)}{3}(a + b)\{g(Y,Z)X - g(X,Z)Y\} \quad \text{(I.B.2.7)}$$
If the vector fields X, Y, and Z are horizontal, then the above equation is rewritten as follows:

$$(\nabla_{C^*}W)(X,Y)Z = \frac{dr(W)}{3}(a+b)\{g(Y,Z)X - g(X,Z)Y\}
- \frac{1}{2}(r + 6\beta)(a + b)[g(Y,Z)(\nabla W\eta)(X) - g(X,Z)(\nabla W\eta)(Y)]\xi.$$ \text{(I.B.2.8)}

Operating ϕ^2 to the above equation, then we find

$$\phi^2((\nabla_{C^*}W)(X,Y)Z) = -\frac{dr(W)}{3}(a + b)\{g(Y,Z)X - g(X,Z)Y\}. \text{ (I.B.2.9)}$$

Hence we conclude the following theorem:

Theorem I.B.2.1. A 3-dimensional β-Kenmotsu manifold is locally ϕ-quasiconformally symmetric if and only if the scalar curvature r is constant if $a + b \neq 0$ and $r \neq -6\beta$.

If $\beta = 1$, then the manifold reduces to a Kenmotsu manifold. Thus from the above theorem we get the following:

Corollary I.B.2.1. A 3-dimensional Kenmotsu manifold is locally ϕ-quasiconformally symmetric if and only if the scalar curvature r is constant if $a + b \neq 0$ and $r \neq -6$.

SECTION 3

Second order parallel tensor

Let us consider a parallel symmetric $(0,2)$-tensor δ on a 3-dimensional β-Kenmotsu manifold M.

Then, by $\nabla \delta = 0$, we have

$$\delta(R(U,V)X,Y) + \delta(X,R(U)V)Y = 0, \text{ (I.B.3.1)}$$

where U, V, X and Y are arbitrary vector fields on M.

As δ is symmetric, putting $U = X = Y = \xi$ in (I.B.3.1), we obtain

$$\delta(\xi, R(\xi, X))\xi = 0. \text{ (I.B.3.2)}$$

Now applying (I.B.p.7) in (I.B.3.2) we have

$$\beta\delta(Y,\xi) - \beta\eta(Y)\delta(\xi, \xi) = 0. \text{ (I.B.3.3)}$$

Differentiating (I.B.3.3) covariantly along X we find

$$\beta\{\delta(\nabla_XY,\xi) + \delta(Y,\nabla_X\xi)\} - \beta\{g(\nabla_XY,\xi) + g(Y,\nabla_X\xi)\}\delta(\xi, \xi) - 2\beta g(Y,\xi)\delta(\nabla_X\xi, \xi) = 0. \text{ (I.B.3.4)}$$
Putting \(Y = \nabla_X Y \) in (I.B.3.2) we get
\[
\beta\{\delta(\nabla_X Y, \xi) - \beta\eta(\nabla_X Y)\delta(\xi, \xi)\} = 0. \tag{I.B.3.5}
\]
From (I.B.3.4) and (I.B.3.5) we have
\[
\beta\delta(Y, \nabla_X \xi) - \beta g(Y, \nabla_X \xi)\delta(\xi, \xi) - 2\beta g(Y, \xi)\delta(\nabla_X \xi, \xi) = 0,
\]
which implies that
\[
\beta^2\{\delta(Y, X) - g(Y, X)\delta(\xi, \xi)\} = 0.
\]
This implies either
\[
\delta(Y, X) = \delta(\xi, \xi)g(Y, X), \quad \text{or}, \quad \beta = 0. \tag{I.B.3.6}
\]
Since \(\delta \) and \(g \) are parallel tensor fields, \(\lambda = \delta(\xi, \xi) \) is constant on \(U \). By the parallelity of \(\delta \) and \(g \) it must be \(\lambda = \lambda g \) on whole of \(M \). Thus we have the following:

Theorem I.B.3.1. A parallel symmetric \((0,2)\) tensor in a 3-dimensional non-cosymplectic \(\beta \)-Kenmotsu manifold is a constant multiple of the associated metric tensor.

SECTION 4

Ricci solitons

Suppose a 3-dimensional \(\beta \)-Kenmotsu manifold admits a Ricci soliton defined by (19). It is well known that \(\nabla g = 0 \). Since \(\lambda \) in the Ricci soliton equation (19) is a constant, so \(\nabla \lambda g = 0 \). Thus \(\mathcal{L}_V g + 2S \) is parallel. Hence using the previous theorem we have \(\mathcal{L}_V g + 2S \) is a constant multiple of metric tensors \(g \), that is, \(\mathcal{L}_V g + 2S = ag \), where \(a \) is constant. Hence \(\mathcal{L}_V g + 2S + 2\lambda g \) reduces to \((a + 2\lambda)g \), that implies \(\lambda = -a/2 \). So we have the following:

Theorem I.B.4.1. In a 3-dimensional non-cosymplectic \(\beta \)-Kenmotsu manifold, the Ricci soliton \((g, V, \lambda)\) is shrinking or expanding according as \(a \) is positive or negative.

Now in particular we investigate the case \(V = \xi \). Then (19) reduces to
\[
\mathcal{L}_\xi g + 2S + 2\lambda g = 0. \tag{I.B.4.1}
\]
Using (I.B.p.5) in a 3-dimensional β-Kenmotsu manifold we have
\[
\mathcal{L}_\xi g(Y, Z) = 2\beta(g(Y, Z) - \eta(Y)\eta(Z)).
\] (I.B.4.2)

Then using (I.B.4.2) in (I.B.4.1) we get $\lambda = -S(\xi, \xi) = \beta(n - 1)$. Also from (I.B.4.1) it follows that the manifold is an η-Einstein manifold. Thus we have

Corollary I.B.4.1. In a 3-dimensional non-cosymplectic β-Kenmotsu manifold, the Ricci soliton (g, ξ, λ) is shrinking and the manifold is an η-Einstein manifold.

SECTION 5

Examples of 3-dimensional β-Kenmotsu manifolds

Example I.B.5.1: We consider the 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3, z \neq 0\}$, where (x, y, z) are standard co-ordinate of \mathbb{R}^3.

The vector fields
\[
e_1 = e^z \frac{\partial}{\partial x}, \quad e_2 = e_z(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}), \quad e_3 = \alpha \frac{\partial}{\partial z}
\]

are linearly independent at each point of M, where α is constant.

Let g be the Riemannian metric defined by
\[
g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1
\]
\[
g(e_1, e_3) = g(e_1, e_2) = g(e_2, e_3) = 0,
\]

Let η be the 1-form defined by $\eta(Z) = g(Z, e_3)$ for any $Z \in \chi(M)$.

Let ϕ be the $(1,1)$ tensor field defined by
\[
\phi(e_1) = -e_2, \quad \phi(e_2) = e_1, \quad \phi(e_3) = 0.
\]

Then using the linearity of ϕ and g, we have
\[
\eta(e_3) = 1,
\]
\[
\phi^2 Z = -Z + \eta(Z)e_3,
\]
\[
g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W),
\]
for any $Z, W \in \chi(M)$.

Then for $e_3 = \xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure.
on M.
Let ∇ be the Levi-Civita connection with respect to metric g. Then we have $[e_1, e_2] = 0$, $[e_1, e_3] = -\alpha e_1$ and $[e_2, e_3] = -\alpha e_2$.
Taking $e_3 = \xi$ and using Koszul formula for the Riemannian metric g, we can easily calculate
\[
\nabla_{e_1}e_1 = \alpha e_3, \quad \nabla_{e_1}e_2 = 0, \quad \nabla_{e_1}e_3 = -\alpha e_1,
\n\nabla_{e_2}e_1 = 0, \quad \nabla_{e_2}e_2 = -\alpha e_3, \quad \nabla_{e_2}e_3 = -\alpha e_2,
\n\nabla_{e_3}e_1 = 0, \quad \nabla_{e_3}e_2 = 0, \quad \nabla_{e_3}e_3 = 0.
\]

We see that the structure (ϕ, ξ, η, g) satisfies the formula (I.B.p.5) for $\beta = -\alpha$.
Hence the manifold is a β-Kenmotsu manifold with $\beta =$ constant.

Example I.B.5.2: We consider the 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3, z \neq 0\}$, where (x, y, z) are standard co-ordinate of \mathbb{R}^3.
The vector fields
\[
e_1 = z \frac{\partial}{\partial x}, \quad e_2 = z \frac{\partial}{\partial y}, \quad e_3 = z \frac{\partial}{\partial z}
\]
are linearly independent at each point of M.
Let g be the Riemannian metric defined by
\[
g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1
\]
\[
g(e_1, e_3) = g(e_1, e_2) = g(e_2, e_3) = 0,
\]
that is, the form of the metric becomes
\[
g = \frac{dx^2 + dy^2 + dz^2}{z^2}.
\]
Let η be the 1-form defined by $\eta(Z) = g(Z, e_3)$ for any $Z \in \chi(M)$.
Let ϕ be the $(1, 1)$ tensor field defined by
\[
\phi(e_1) = -e_2, \quad \phi(e_2) = e_1, \quad \phi(e_3) = 0.
\]
Then using the linearity of ϕ and g, we have
\[
\eta(e_3) = 1,
\]
\[
\phi^2 Z = -Z + \eta(Z)e_3,
\]
\[
g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W),
\]
for any \(Z, W \in \chi(M) \).
Then for \(e_3 = \xi \), the structure \((\phi, \xi, \eta, g)\) defines an almost contact metric structure on \(M \).

Let \(\nabla \) be the Levi-Civita connection with respect to metric \(g \). Then we have

\[
[e_1, e_3] = e_1 e_3 - e_3 e_1
\]
\[
= z \frac{\partial}{\partial x} (z \frac{\partial}{\partial z} \xi) - z \frac{\partial}{\partial z} (z \frac{\partial}{\partial x} \xi)
\]
\[
= z^2 \frac{\partial^2}{\partial x \partial z} - z^2 \frac{\partial^2}{\partial z \partial x} - z \frac{\partial}{\partial x}
\]
\[
= -e_1.
\]

Similarly, \([e_1, e_2] = 0 \) and \([e_2, e_3] = -e_2 \).

The Riemannian connection \(\nabla \) of the metric \(g \) is given by

\[
2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]),
\]
which known as Koszul’s formula.

Using (I.B.5.1) we have

\[
2g(\nabla_{e_1} e_3, e_1) = -2g(e_1, e_1) = 2g(-e_1, e_1).
\]

Again by (I.B.5.1)

\[
2g(\nabla_{e_1} e_3, e_2) = 0 = 2g(-e_1, e_2)
\]
and

\[
2g(\nabla_{e_1} e_3, e_3) = 0 = 2g(-e_1, e_3).
\]

From (I.B.5.2), (I.B.5.3) and (I.B.5.4) we obtain

\[
2g(\nabla_{e_1} e_3, X) = 2g(-e_1, X),
\]
for all \(X \in \chi(M) \).
Thus

\[
\nabla_{e_1} e_3 = -e_1.
\]

Therefore, (I.B.5.1) further yields

\[
\nabla_{e_1} e_1 = e_3, \quad \nabla_{e_1} e_2 = 0, \quad \nabla_{e_1} e_3 = -e_1,
\]
\[
\nabla_{e_2} e_1 = 0, \quad \nabla_{e_2} e_2 = e_3, \quad \nabla_{e_2} e_3 = -e_2.
\]
\[\nabla_{e_3} e_1 = 0, \quad \nabla_{e_3} e_2 = 0, \quad \nabla_{e_3} e_3 = 0. \tag{I.B.5.5} \]

(I.B.5.5) tells us that the manifold satisfies (I.B.p.5) for \(\beta = -1 \) and \(\xi = e_3 \). Hence the manifold is a \(\beta \)-Kenmotsu manifold with \(\beta = \text{constant} \).

It is known that

\[R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z. \tag{I.B.5.6} \]

With the help of the above results and using (I.B.5.6) it can be easily verified that

\[R(e_1, e_2)e_3 = 0, \quad R(e_2, e_3)e_3 = -e_2, \quad R(e_1, e_3)e_3 = -e_1, \]
\[R(e_1, e_2)e_2 = -e_1, \quad R(e_2, e_3)e_2 = e_3, \quad R(e_1, e_3)e_2 = 0, \]
\[R(e_1, e_2)e_1 = e_2, \quad R(e_2, e_3)e_1 = 0, \quad R(e_1, e_3)e_1 = e_3. \]

From the above expressions of the curvature tensor we obtain

\[S(e_1, e_1) = g(R(e_1, e_2)e_2, e_1) + g(R(e_1, e_3)e_3, e_1) = -2. \]

Similarly we have

\[S(e_2, e_2) = S(e_3, e_3) = -2. \]

Therefore,

\[r = S(e_1, e_1) + S(e_2, e_2) + S(e_3, e_3) = -6. \]

Thus the scalar curvature \(r \) is constant. Hence Theorem I.B.2.1. is verified.