


Investigation into the use of biodiesel fuels on Britain’s railways. Available from: http://www.rssb.co.uk.


Physico-chemical analysis of various biodiesel from different bioenergy crops - Ph.D Thesis
(L. Arul Mary Syndia)

Meenadevi VN, Nagendra Prasad P, Arulmary Syndia L, Rajakohila M (2012). Physico-
chemical characterization of rubber seed oil (Hevea brasiliensis) - a promising
feedstock for biodiesel production. International Journal of Chemical and Analytical
Science 3(5): 1402 - 1404.


Meenadevi VN, Vijayalakshmi GS, Nagendra Prasad P (2009). Physico-chemical analysis of
Alexandrian laurel oil - a potential source of biodiesel. Journal of Economic and

Meher LC, Sagar DV, Naik SN (2006). Technical aspects of biodiesel production by
transesterification – a review. Renewable and Sustainable Energy Reviews 10(3):
248 - 268.


Melis B (1924). Experiments on the transformation of vegetable oils and animal fats to light

Mohibbe Azam M, Waris A, Nahar NM (2005). Prospects and potential of fatty acid methyl
esters of some non-traditional seed oils for use as biodiesel in India. Biomass and
Bioenergy 29: 293 - 302.


fatty acid and electrical conductivity changes in cotton seed (Gossypium hirsutum)

Mukunda HS (1999). A biomass option for enhancing energy security. IISc. Bangalore:
National Institute of Advanced Studies pp: 36.


stability of edible oils and their blends. Journal of Food Science and Technology 24(2):
84 - 87.

Murugesan A, Umarani C, Chinnusamy TR, Krishnan M, Subramanian R, Nedunchezhiyan N
(2009). Production and analysis of biodiesel from non edible oils-a review. Renewable
and sustainable energy reviews 13: 825 - 834.

Mushrush GW, Wynne JH, Lloyd CT, Willauer HD, Beal EJ (2007). Soybean biodiesel:


Physico-chemical analysis of various biodiesel from different bioenergy crops - Ph.D Theis (L. Arul Mary Syndia)


March, 2004 At Asian And Pacific Centre For Agricultural Engineering And Machinery (APCAEM), Beijing, China pp: 1 - 30.


