CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION 01

1.2 TYPES OF CATALYSTS 02
1.2.1 Photocatalysts 03
1.2.2 Biocatalysts 03
1.2.3 Nanocatalysts 04
1.2.4 Electrocatalysts 04
1.2.5 Homogeneous catalysts 04
1.2.6 Heterogeneous catalysts 05

1.3 TYPES OF WELL-KNOWN HETERGENIZATION METHODS 05
1.3.1 Metal complexes or active metal supported on silica 05
1.3.2 Polymer-supported metal complexes 08
1.3.3 Multi-wall carbon nanotube-supported metal complexes 09
1.3.4 Zeolite-Y encapsulated metal complexes 10
1.3.4.1 Methods of complex encapsulation in zeolite-Y 12
 a) Zeolite synthesis method (ZS) 12
 b) Template synthesis method (TS) 13
 c) Flexible ligand method (FL) 13

1.4 AIM AND OBJECTIVES 15

REFERENCES 16

CHAPTER 2 EXPERIMENTAL

2.1 INTRODUCTION 23

2.2 MATERIALS 24

2.3 SYNTHESIS SECTION 24
2.3.1 Synthesis of Schiff base ligands 24
 2.3.1.1 Synthesis of H₂hacen and H₂chacen ligands 24
 2.3.1.2 Synthesis of H₂saldien and H₂nsaldien ligands 25
2.3.2 Synthesis of neat transition metal complexes 26
 2.3.2.1 Synthesis of neat metal complexes of H₂hacen and H₂chacen 26
 a) Synthesis of neat metal complexes of Cu(II) and Co(II) 26
 b) Synthesis of neat metal complexes of Ni(II) 26
 c) Synthesis of neat metal complexes of Mn(II) 26
 d) Synthesis of neat metal complexes of Fe(II) and VO(IV) 29
2.3.2.2 Synthesis of neat metal complexes of H₂saldien and H₂nsaldien
 a) Synthesis of neat metal complexes of Fe(III) and Ru(III) 29

2.3.3 Synthesis of transition metal exchanged zeolite-Y 29
 2.3.3.1 Synthesis metal exchanged M(II/IV)-Y 29
 2.3.3.2 Synthesis metal exchanged M(III)-Y [M=Fe(III), Ru(III)] 32

2.3.4 Synthesis of zeolite-Y encapsulated metal complexes 32

2.4 PHYSICO-CHEMICAL TECHNIQUES 34
 2.4.1 Elemental analysis (CHN Analyzer) 34
 2.4.2 Elemental analysis (ICP-OES) 34
 2.4.3 BET Surface area and pore volume analysis 34
 2.4.4 Powder X-ray diffraction studies (XRD) 35
 2.4.5 Scanning electron microscope (SEM) 35
 2.4.6 Fourier transform infrared spectroscopy (FTIR) 36
 2.4.7 Electronic spectroscopy (UV-Vis) 36
 2.4.8 Thermogravimetric analysis (TGA) 36
 2.4.9 Nuclear magnetic resonance (NMR) 37
 2.4.10 Molar conductivity 37
 2.4.11 Magnetic susceptibility 37
 2.4.12 Melting point apparatus 37
 2.4.13 GC and GC-MS 37
 2.4.14 Atomic absorption spectroscopy (AAS) 38
 2.4.15 Thin layer chromatography (TLC) 38
 2.4.16 Soxhlet extractor 38
 2.3.17 Oil bath for catalytic study 38

REFERENCES 39

CHAPTER 3 CHARACTERIZATION 41

3.1 INTRODUCTION 41

3.2. CHARACTERIZATION OF SCHIFF BASE LIGANDS 41
 3.2.1 Elemental analysis (CHN) 41
 3.2.2 Fourier transform infrared spectroscopy (FTIR) 42
 3.2.3 Electronic spectroscopy (UV-Vis) 43
 3.2.4 Nuclear magnetic resonance (NMR) 43
 3.2.5 Thermogravimetric analysis (TGA) 47

3.3 CHARACTERIZATION OF NEAT METAL COMPLEXES 48
 3.3.1 Elemental analysis (CHN) and ICP-OES 48
3.3.2 Molar conductivity 48
3.3.3 Fourier transform infrared spectroscopy (FTIR) 52
3.3.4 Electronic spectroscopy (UV-Vis) 54
3.3.5 Thermogravimetric analysis (TGA) 60

3.4 CHARACTERIZATION OF METAL EXCHANGED ZEOLITE-Y 65
3.4.1 Inductively coupled plasma optical emission spectrometry (ICP-OES) 65
3.4.2 BET surface area analysis 65
3.4.3 Powder X-ray diffraction studies (XRD) 66
3.4.4 Scanning electron microscopy (SEM) 67
3.4.5 Fourier transform infrared spectroscopy (FTIR) 68
3.4.6 Electronic spectroscopy (UV-Vis) 70
3.4.7 Thermogravimetric analysis (TGA) 72

3.5 CHARACTERIZATION OF ZEOLITE-Y ENCAPSULATED COMPLEXES 74
3.5.1 Inductively coupled plasma optical emission spectroscopy (ICP-OES) 74
3.5.2 BET surface area analysis 76
3.5.3 Powder X-ray diffraction studies (XRD) 77
3.5.4 Scanning electron microscopy (SEM) 77
3.5.5 Fourier transform infrared spectroscopy (FTIR) 80
3.5.6 Electronic spectroscopy (UV-Vis) 83
3.5.7 Thermogravimetric analysis (TGA) 88

REFERENCES 93

CHAPTER 4 CATALYTIC ACTIVITY

4.1 INTRODUCTION 97
4.1.1 Materials 98
4.1.2 Catalytic activity measurements 98

4.2 CATALYTIC ACTIVITY 99
4.2.1 Oxidation of cyclohexene 99
4.2.1.1 Influences of various oxidants 100
4.2.1.2 Influences of various solvent 101
4.2.1.3 Influences of various substrate/oxidant ratios 102
4.2.1.4 Influences of reaction temperature 103
4.2.1.5 Influences of reaction time 103
4.2.1.6 Influences of solvent amount 104
4.2.1.7 Influence of catalyst amount 105
4.2.1.8 Cyclohexene oxidation using various catalysts at optimized reaction condition 106
4.2.1.9 Catalyst stability and reusability 111
4.2.1.10 The probable mechanism 115

4.2.2 Oxidation of styrene 123
4.2.2.1 Influence of reaction time on styrene oxidation catalyzed by [Mn(hacen)(OH₂)₂]-Y 127

4.2.3 Oxidation of benzene 128
4.2.3.1 Influence of reaction time on benzene oxidation catalyzed by [Mn(hacen)(OH₂)₂]-Y 132

4.2.4 Additional catalytic studies 133
4.2.4.1 Oxidation of phenol 133
4.2.4.2 Oxidation of Limonene and α-pinene 136
4.2.4.3 Oxidation of various organic substrates catalyzed by Cu(II) complexes 139

REFERENCES 142

CONCLUSION 147

LIST OF RESEARCH ARTICLES 150

LIST OF CONFERENCES/SYMPOSIUM ATTENDED 168

LIST OF AWARDS 169