CONTENTS

<table>
<thead>
<tr>
<th>Entry</th>
<th>Topic</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preface</td>
<td>(v)</td>
</tr>
<tr>
<td></td>
<td>Acknowledgement</td>
<td>(vii)</td>
</tr>
</tbody>
</table>

CHAPTER 1

1.1.1. Benzimidazole and its analogues
1.1.2. Special features of 2-substituted-1H-benzimidazoles
1.1.3. Synthetic routes toward benzimidazole
1.1.4. Cyclocondensation *cum* oxidation
1.1.5. VO(acac)₂ as an efficient chemoselective catalyst
1.2.1. Limitations and possible reaction path under acidic and heating conditions
1.2.2. Development and optimization of the reaction
1.2.3. Synthesis of 2-substituted-1H-benzimidazoles
1.2.4. Mechanistic hypothesis for the metal catalyzed process
1.2.5. Development of smart combo catalyst
1.2.6. Conclusion
1.3.1. Synthesis of VO(acac)₂
1.3.2. VO(acac)₂-Ti(OBu)₄ catalyzed synthesis of 2-substituted-1H-benzimidazoles
1.3.3. Characterization data
1.3.4. VO(acac)₂-CeCl₃ catalyzed synthesis of 2-substituted-1H-benzimidazoles
1.3.5. Characterization data
References
¹H and ¹³C NMR spectra
2.1.1. Chiral benzimidazoles 36
2.1.2. Special features of chiral benzimidazoles 36
2.1.3. Choice of carbohydrate precursor 37
2.1.4. Synthetic routes towards chiral benzimidazoles 37
1.1.5. Cerium catalyzed reactions 43
2.2.1. Synthesis of sugar-based precursor 47
2.2.1.1. Synthesis of 2-C-formyl-3,4,6-tri-O-benzyl-/methyl glycals (5a-d) 47
2.2.1.2. Synthesis of 6-alkyloxy-2,2-dimethyl-tetrahydro-furo[2,3-d][1,3]dioxole-5-carbaldehyde (7a, b) 48
2.2.2. Development and optimization of the reaction toward construction of glycal-based benzimidazoles 48
2.2.3. Synthesis of glycal-based chiral benzimidazoles 50
2.2.4. Development of CeCl₃-VO(acac)₂ combo catalyst 50
2.2.5. Synthesis of other sugar-based chiral benzimidazoles 53
2.2.6. Studies on mechanistic inside of the reaction 54
2.2.7. Determination of possible geometry of the chiral benzimidazole (6i) 55
2.2.8. Elucidation of structure of chiral benzimidazole (6i) 57
2.2.9. Conclusion 62
2.3.1. Synthesis of 2-C-glycral aldehydes 63
2.3.2. Synthesis of other sugar-based aldehyde (7b) 68
2.3.3. Synthesis of glycal-based chiral benzimidazoles by VO(acac)₂-Ti(OBu)₄ 70
2.3.3.1. Synthesis of compound 6a by VO(acac)₂-Ti(OBu)₄ 70
2.3.3.2. Characterization data of chiral benzimidazole 70
2.3.4. Synthesis of glycal-based chiral benzimidazoles by
2.3.4.1. Synthesis of compound 6i by CeCl$_3$-VO(acac)$_2$ combo catalyst

2.3.4.2. Characterization data of chiral benzimidazole

2.3.5 Synthesis of pentose sugar-based chiral benzimidazoles by CeCl$_3$-VO(acac)$_2$ combo catalyst

2.3.5.1. Synthesis of compound 8a by CeCl$_3$-VO(acac)$_2$ combo catalyst

2.3.5.2. Characterization data of other sugar-based chiral Benzimidazole

References

1H and 13C NMR spectra

CHAPTER 3

3.1.1. Sugar-based chiral synthons

3.1.2. General features of glycols

3.1.3. Utilities of glycal-based glycosides

3.1.4. 2-C-Formyl glycals: emerging chiral synthons in organic Synthesis

3.1.5. Synthetic routes of 2-C-formyl-glycals and their analogues

3.2.1. Installation of allyloxy group to 2-C-formyl glycals

3.2.2. Development and optimization of the reaction

3.2.3. Synthesis of C-1 and C-3 O-allyl-2-C-formyl glycal Synthons

3.2.4. Possible mechanistic path for the metal catalyzed process

3.2.5. Conclusion

3.3.1. Synthesis of 2-C-formyl-3,4,6-tri-O-benzyl-/methyl glycals (5a-d)

3.3.2. General experimental procedure for preparation of C-1 and C-3-O-allyl-2-C-formyl glycosides

References 83

1H and 13C NMR spectra 87

CHAPTER 3

3.1.1. Sugar-based chiral synthons

3.1.2. General features of glycols

3.1.3. Utilities of glycal-based glycosides

3.1.4. 2-C-Formyl glycals: emerging chiral synthons in organic Synthesis

3.2.1. Installation of allyloxy group to 2-C-formyl glycals

3.2.2. Development and optimization of the reaction

3.2.3. Synthesis of C-1 and C-3 O-allyl-2-C-formyl glycal Synthons

3.2.4. Possible mechanistic path for the metal catalyzed process

3.2.5. Conclusion

3.3.1. Synthesis of 2-C-formyl-3,4,6-tri-O-benzyl-/methyl glycals (5a-d)

3.3.2. General experimental procedure for preparation of C-1 and C-3-O-allyl-2-C-formyl glycosides

References 83

1H and 13C NMR spectra 87
3.3.2.1. Synthesis of 5-benzyloxy-6-benzyloxymethyl-4-hex-5-enyloxy-5,6-dihydro-4\textsuperscript{Z/-pyran-3-carbaldehyde (Ilf) 117

3.3.2.2. Characteristic data 117

3.3.3. 1H, 13C and 2D NMR spectra of 2-allyloxy-5-benzyloxy-6-benzyloxymethyl-5,6-dihydro-2H-pyran-3-carbaldehyde (10d) 122

3.3.4. 1H, 13C and 2D NMR spectra of 5-benzyloxy-6-benzyloxymethyl-4-hex-5-enyloxy-5,6-dihydro-4H-pyran-3-carbaldehyde (11f) 126

References 131

1H and 13C NMR spectra 134

CHAPTER 4

4.1.1. Organic materials and chirality 145

4.1.2. Fabrication of low dimensional nanostructured organic materials 145

4.1.3. Operational noncovalent weak interactions between the chiral nano building blocks 146

4.1.4. Characterization of the organic nanostructured Materials 146

4.1.5. Features of chiral organic nanostructured materials 147

4.2.1. Fabrication of nanostructured materials 151

4.2.2. Photophysical studies of the chiral benzimidazoles in solution 154

4.2.3. Studies on optical properties of the chiral organic Materials 157

4.2.4. Weak binding interactions study by Density Functional Theory (DFT) of the sugar-based chiral benzimidazoles 60

4.2.5. Binding observation of the chiral benzimidazoles with DNA 162

4.2.6 Conclusion 165

References 165