TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>ABBREVIATIONS</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>v-viii</td>
</tr>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td>1.1 GENERAL</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>1.2 OBJECTIVES OF THE RESEARCH</td>
<td>4</td>
</tr>
<tr>
<td>II.</td>
<td>REVIEW OF LITRATURE</td>
<td>5-31</td>
</tr>
<tr>
<td></td>
<td>2.1 Background</td>
<td>5-6</td>
</tr>
<tr>
<td></td>
<td>2.2 Clinical manifestation of Candidiasis</td>
<td>6-7</td>
</tr>
<tr>
<td></td>
<td>2.3 Morphology of Candida species</td>
<td>7-8</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Germ tube formation</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Chlamydospore formation</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Pseudohyphae and hypha formation</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.4 Genome of Candida albicans and other Candida species</td>
<td>9-10</td>
</tr>
<tr>
<td></td>
<td>2.5 Epidemiology of Candidiasis</td>
<td>11-12</td>
</tr>
<tr>
<td></td>
<td>2.6 Pathogenesis of candidal infections</td>
<td>12-13</td>
</tr>
<tr>
<td></td>
<td>2.7 Virulence factors of Candida species</td>
<td>13-14</td>
</tr>
<tr>
<td></td>
<td>2.7.1 Biofilm formation by Candida species</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.7.1.1 Possible mechanisms of biofilm formation</td>
<td>14-15</td>
</tr>
</tbody>
</table>
2.8 Antifungal agents

2.8.1 Polyenes

2.8.2 Azoles

2.8.3 Allylamine and Benzyamines

2.9 Antifungal drug resistance and role of ERG11 gene

2.10 Relation of drug resistance with virulence and pathogenicity

2.11 Overcoming drug resistance against fluconazole in *Candida* species

2.12 Ergosterol pathway

2.13 Ergosterol pathway inhibitors

2.14 Diagnosis of *Candida* infections

2.15 Management of candidal infections

III RESEARCH METHODOLOGY

3.1 Collection of isolates of *Candida* species

3.2 Antifungal drugs and inhibitors

3.3 Morphological examination on Corn meal agar

3.3.1 Morphological examination on *Candida* differential agar

3.3.2 Germ tube test

3.3.3 Sugar fermentation test

3.3.4 Sugar assimilation test

3.4 Susceptibility testing of *Candida* species against antifungal agents

3.4.1 Disc diffusion method

3.4.2 Broth dilution method

3.5 Calculation of minimum inhibitory concentration values for fluconazole

3.6 Determination of *in vitro* interaction between fluconazole and ergosterol pathway inhibitors by microdilution checkerboard method

3.7 Studies on selective virulence traits (*in vitro*)

3.7.1 Assessment of phospholipase activity
3.7.2 Assessment of protease activity
 3.7.2.1 Protease activity on Skimmed milk agar
 3.7.2.2 Protease activity on Gelatin agar
 (Gelatinase assay)
3.7.3 Determination of Hemolytic activity
3.7.4 Biofilm formation
 3.7.4.1 Visual detection test
 3.7.4.2 Spectrophotometric detection test
3.7.5 Agar invasion assay
3.7.6 Hyphal growth on solid media and adherence assay
3.8 Amplification of ERG11 gene
 3.8.1 DNA extraction
 3.8.2 Polymerase chain reaction (PCR) amplification of ERG11 gene
 3.8.3 Sequencing of amplified product and determination of genetic
 variability in ERG11gene

IV RESULT
4.1 Phenotypic characterization of the isolates
4.2 Germ tube production
4.3 Sugar fermentation and assimilation tests
4.4 Confirmation of the isolates
4.5 In vitro susceptibility of Candida species to fluconazole
4.6 Comparative analysis of susceptibility patterns of Candida species against
 fluconazole by Disc diffusion and broth dilution methods
4.7 In Vitro Studies on selective virulence traits
 4.7.1 Phospholipase activity
 4.7.2 Protease activity of Candida species
 4.7.2.1 Protease activity on Skimmed milk agar
 4.7.2.2 Gelatinase assay
 4.7.3 Hemolytic activity of Candida species
4.7.4 Biofilm formation 42
4.7.5 Agar invasion 43
4.7.6 Hypha formation and Adherence assay 43
4.8 In vitro susceptibility of inhibitors of ergosterol pathway to *Candida* species 43-44
4.9 PCR amplification of ERG 11 genes of *Candida* species and gel electrophoresis of amplicons 44

4.10 Nucleotide sequence homology of ERG11 gene amplicons of *Candida* species. 44
4.10.1 Nucleotide sequence homology of ERG11 gene amplicons of *C. albicans* AGK-3 with the standard NCBI sequences 44
4.10.2 Nucleotide sequence homology of ERG11 gene amplicons of *C. tropicalis* (FOD-8) with the standard NCBI sequences 44
4.10.3 Nucleotide sequence homology of ERG11 gene amplicons of *C. albicans* (GMC-6) with the standard NCBI sequences 44-45
4.10.4 Nucleotide sequence homology of ERG11 gene amplicons of *C. tropicalis* (FOD-9) with the standard NCBI sequences 45
4.10.5 Nucleotide sequence homology of ERG11 gene amplicons of *C. glabrata* (1/018/9) with the standard NCBI sequences. 45
4.10.6 Nucleotide sequence homology of ERG11 gene amplicons of *C. parapsilosis* (FR-5) with the standard NCBI sequences. 45
4.11 Alignment of nucleotide sequences of amplicons of ERG 11 genes of selective *Candida* species studied. 45
4.12 Predicted amino acid sequences of ERG11 gene of selective *Candida* species studied. 46
4.12.1 Amino acid sequence of *C. albicans* (AGK-3). 46
4.12.2 Amino acid sequence of *C. tropicalis* (FOD-8). 46
4.12.3 Amino acid sequence of *C. albicans* (GMC-6). 46
4.12.4 Amino acid sequence of *C. tropicalis* (FOD-9). 46
4.12.5 Amino acid sequence of *C. glabrata* (1/018/9). 46
4.12.6 Amino acid sequence of *C. tropicalis* (FR-5). 46
4.12.7 Amino acid sequence of *C. albicans* ATCC 90028 (GU371851) 46

4.13 Comparative analysis of amino acid sequences of *Candida* species with fluconazole sensitive ATCC 90028 (GU371851) strain of *C. albicans*. 47

V DISCUSSION 90-100

VI SUMMARY AND CONCLUSIONS 101

VII REFERENCES 102-115

ANNEXTURE

I. 116-118
II. 119-120
III. 121

PUBLICATIONS 122