List of Figures

1.1 Schematic of two possible phase diagrams close to a quantum critical point. Fig. (a) represents the case where a non-vanishing order parameter exists only at $T = 0$, for example, the one-dimensional transverse field Ising model (TFIM) with λ defining as the transverse field. The other case is shown in Fig. (b) representing that order can exist even at finite temperature, for example, the two-dimensional TFIM. The solid curve in Fig. (b) corresponds to the phase boundary between the ordered and disordered phases. The phase transitions of such systems are determined by the classical fluctuations except at $T = 0$ where quantum phase transition occurs at $\lambda = \lambda_c$. ... 5

1.2 The phase diagram of a one-dimensional transverse field XY model at zero temperature. The vertical blue lines, $h = \pm(J_x + J_y)$ represent two Ising critical lines which separate the ferromagnetic phase from the paramagnetic one, whereas the horizontal line with red color ($J_x = J_y$, $|h| < J_x + J_y$) denotes the phase transition between two long-ordered phases FM$_x$ and FM$_y$, with ferromagnetic ordering in the x and y directions respectively. P_1 and P_2 are two multicritical points where the Ising critical lines and the anisotropic critical line meet to each other. 7

1.3 Phase diagram of the three-spin interacting transverse Ising model at zero temperature. The point A corresponds to one of the MCPs. The phase boundaries are marked by the three different lines as shown in the label. The boundary between the commensurate and incommensurate regions is also shown in the plot. ... 13
List of Figures

1.4 Schematic representation of the Kitaev model on a honeycomb lattice with \(\vec{M}_1 \) and \(\vec{M}_2 \) being spanning vectors of the lattice and \(J_1, J_2 \) and \(J_3 \), the coupling on the three bonds. Sites \(a \) and \(b \) represent two inequivalent sites of the lattice. .. 16

1.5 The entire time evolution of the system is divided in three regions. For \(|t| > t' \) the evolution is non-adiabatic whereas for \(|t| < t' \), it is adiabatic. 30

1.6 Phase diagram of the one-dimensional \(p \)-wave superconducting system (see Eq. (1.80)). Phases I and II are topologically non-trivial while phase III is topologically trivial. .. 36

1.7 Schematic representation of the Majorana chain with the Hamiltonian as defined in Eq. (1.85) considering a virtual ladder. It may be thought that the middle of each vertical bond here represents a fermionic site \(j \) which supports two Majorana fermions \(a_j \) and \(b_j \) represented by red and blue filled circles respectively with their intra-site interaction \(\mu \). In this representation, other two couplings are symbolized by diagonal links. ... 37

1.8 Schematic representation of the Hamiltonian in Eq. (1.85) with different special conditions as defined in the text. (a) \(\mu \neq 0, w = \Delta = 0 \), (b) \(\mu = 0, w = \Delta \) and (c) \(\mu = 0, w = -\Delta \). In (a) the pair of Majoranas at each site is connected to each other by the strength \(\mu \) resulting a topologically trivial phase. (b) In this regime, there are two isolated Majorana modes \(a_1 \) and \(b_N \) at the left end and right end respectively. (c) This regime also represents a topologically non-trivial with two isolated Majorana modes \(b_1 \) and \(a_N \). .. 38

1.9 Two isolated Majorana states are localized in two edges of a 100-site open Majorana chain in phase I (\(\Delta = 0.1 \) and \(\mu = 0.0 \)) with a exponential decay into the bulk of the chain. \(j \) labels as Majorana sites 1, 2, ... 200. ... 40

1.10 Variation of cost energy with different configurations of a computationally hard problem like in a spin glass. The figure 1(b) is a cartoon for figure 1(a). In classical annealing case, to reach global minima the system has to overcome a large barrier \(\Delta E \) of \(O(N) \), \(N \) being the system size (escape probability \(\sim \exp(-\Delta E/T) \) at temperature \(T \)). In quantum annealing case, system can tunnel through the barrier; if the barrier is narrow (tunneling probability \(\sim \exp(-w\sqrt{\Delta E/\Gamma}) \) for tunneling fluctuation field \(\Gamma \) and barrier width \(w \)). .. 42
2.1 The phase diagram of the one-dimensional three-spin interacting TFIM along with the various paths studied for approaching the MCP. The point A corresponds to one of the MCPs. The phase boundaries are marked by the three different lines as shown in the label whereas the paths studied in this chapter are I, II, III and IV, as shown by the lines with arrows. Path IV is also the gapless line separating various phases. The shaded region corresponds to the region where quasicritical points exists.

2.2 The variation of χ_F as a function of h at $J_x = 2, J_3 = -1$ for a system size $L=100$. The first peak at $h = -3$ corresponds to the Ising critical point, showing linear scaling with L, and the second peak is at the MCP, i.e., at $h=1$ where L^5 scaling is observed. Inset shows the oscillating fidelity susceptibility close to the MCP, pointing to the presence of quasicritical points.

2.3 Scaling of χ_F along four different paths:(a), (b) and (c) corresponds to Path I, II and III with $\chi_F \propto L^5$ showing the effect of MCP whereas Path IV is linear in L as there is no quasicritical point along this line or path.

2.4 The LE shows sharp dips at the Ising critical points ($h = -2, 0$) and at anisotropic critical point at $h = 1$.

2.5 The variation of the LE as a function of the scaled time t/L^α to highlight the scaling of time period with system size L, with α being the scaling exponent ($T \propto L^\alpha$), as obtained in the text for various types of critical points, i.e., (a) the anisotropic critical point where $T \propto L$, (b) the MCP where $T \propto L^2$ and (c) the quasicritical point with $T \propto L^3$. In (d), we present the almost linear variation of $\ln L$ with t^2 for small times with $L = 100$ at the various critical points confirming the general small time behavior given by $L \sim e^{-t^2}$.

3.1 Phase diagram of the Kitaev model, satisfying $J_1 + J_2 + J_3 = 4$. The inner equilateral triangle corresponds to the gapless phase in which the coupling parameters satisfies the relations $J_1 \leq J_2 + J_3, J_2 \leq J_3 + J_1$ and $J_3 \leq J_1 + J_2$. Along the three paths I, II and III J_3 is varied, so as to study the LE. The path I, II and III are defined by the equations $J_1 = J_2, J_1 = J_2 + 1$ and $J_1 + J_3 = 4$ respectively.
3.2 LE as a function of parameter J_3 (J_3 is varied along path I) shows a sharp dip at point A ($J_3 = 2 - \delta$) and after a small revival in the gapless phase it again decays at point B, $J_3 = 0$ (see Fig. 3.1) with $N_x = N_y = 200$, $\delta = 0.01$ and $t = 10$. Inset (a) shows the variation in the LE when the parameter J_3 is varied along the path II ($J_1 = J_2 + 1$) in the phase diagram for $N_x = N_y = 200$, $\delta = 0.01$ and $t = 10$ clearly showing a sharp dip at point P ($J_3 = 2 - \delta$) and again rise at point Q ($J_3 = 1 - \delta$). Inset (b) marks the dip in LE when J_3 is varied along the path III ($J_1 + J_3 = 4$), for this case $N = 400$, $\delta = 0.01$ and $t = 10$ so that E realize the change in the behavior at $J_3 = 2 - \delta$. Details of these three cases is provided in the sections 3.2.1, 3.2.1 and 3.2.1 respectively.

3.3 The collapse and revival of LE with t at the AQCP (point ‘A’ in Fig. 3.1) for $J_1 = J_2 = 1$, $\delta = 0.01$ and $J_3 = 2 - \delta$, keeping $N_x (= 100)$, fixed and varying N_y verifies the scaling relations satisfied by N_y, δ and t as discussed in the text. The inset shows that the quasi-period of the collapse and revival is independent of N_x.

3.4 Variation of the LE with t at the AQCP P ($J_1 = 3/2, J_2 = 1/2$ and $J_3 = 2 - \delta$) shows collapse and revival with different $N_x = N_y = N$ and $\delta = 0.001$.

3.5 The LE as function of time at the QCP (point ‘R’ in Fig. 3.1) $J_1 = 2$ and $J_3 = 2 - \delta$ with different N and $\delta = 0.01$, verifying the analytical scaling with N, δ and t.

4.1 The plot shows the LE as a function of time for different values of δ with $J-$quench at $L_1 = L/2$ and the $h-$quench at site $L' = L/3$. The transverse field at L' is changed from 1 to $1 + \delta$. For the J quenching alone (i.e., $\delta = 0$ case), the LE shows peak at $t_3 = L/v_{max} = 150$ and $T = 2t_3$ where $v_{max} = 2$ and $L = 300$. By applying two local perturbations simultaneously at time $t = 0$, we observe a small peak at $t' = 50$ and comparatively a stronger peak at $t'' = 200$. We also note small fluctuations near $t_1 = 100$ which is more clearly seen for $\delta = 1$ curve.

4.2 The plot shows the LE as a function of time when h-quenching of strength $\delta = 1.0$ is performed at different sites L' of the total chain with J-quenching fixed at $L_1 = L/2$. Here $L' = 0$ corresponds to the case of J-quenching alone where $t_3 = t_4 = 150$. For $L' = L/3, t' = 50$ and $t'' = 200$ whereas $t' = 90$ and $t'' = 240$ for $L' = L/5$. All these timescales are clearly seen in the above figure. We also observe small perturbations at t_1 which is not very clear.
4.3 The EE as a function of time after a local J-quench in the middle of the chain ($L_1 = L/2$) along with h-quenching at $L' = L/4$ for different interaction strengths δ. Here, we consider $L_A = L_1 = L/2$ as the subsystem with total system size $L = 300$. The time scales $t'/2$, t' and t'' can be seen in this figure which agrees well with our explanations. In this case, $t' = 75$ and $t'' = 225$. Another time scale observed is around $t = 187$ which is when QP^1_R enters system A resulting in an increase in the EE as QP^1_L is in system B during that time. Note that the effect of QP^1 is very small compared to QP^2.

4.4 Time evolution of the EE after a local J-quench with h-quenching at different sites L' for $\delta = 1.0$. For $L' = L/6 = 50$, the deviation from the no h-quench case starts at $t'/2 = 50$. A sharp decrease is observed at $t = t' = 100$ when QP^2_L gets reflected at L' and returns to $L_1 = L_A$. There is a sudden increase in the EE after $t = 150$ when QP^2_R enters system A whereas QP^2_L is still in system B. We again see a dip at $t'' = 250$ when QP^2_L and QP^2_R exchange their systems. Similarly, for the case $L' = 2L/3 = 200$, QP^1_L enters system A at $t = t'/2 = 25$ when the deviation from the single quench case appears. We see a sudden decrease of the EE at $t = t'$ when QP^2_R enters system A after getting reflected at L' so that both the QPs are in system A. After $t = 150$, once again the EE increases as QP^2_L enters system B. A sharp dip is seen at $t = t'' = 200$ when QP^2_R and QP^2_L exchange systems.

4.5 The plot shows the LE as a function of time for double quenches with $L_1 = 100$, $L_A = 100$ and $L = 300$ and different L'. The first peak of the LE occurs at time $t' = 2(L_1 - L')/v_{\text{max}}$ ($t' = 25$ and 50 for $L' = L/4$ and $L/6$ respectively). The other time scales are $t_3 = 100$, $t_4 = 200$ and t''. We note that $t'' = 225$ and 250 for $L' = 75$ and 50, respectively.
4.6 Time evolution of the EE for the same case as in Fig. 4.5 but different L'. For $L' = L/4$, the deviation from single J-quench case appears at $t'/2 = 12.5$ whereas at $t' = 25$, QP^2_L enters system B after getting reflected at L' where its other partner QP^2_R is already present. The decrease in the EE continues till QP^2_R enters system A at $t = L_2 = 200$. We also see a dip at $t = t'' = 225$ where QP^2_L and QP^2_R exchanges their systems. Similarly, one can argue for the evolution of the EE when $L' = 3L/4$. The deviation from the single quench case begins at $t = 62.5$. In this case, QP^2_L enters system B at $t = 100$ which causes a sharp decrease at this time. On the other hand, QP^2_R enters system A at $t = 125$ resulting to an increase in the EE as its other counterpart is still in B. The natural increase at $t = 200$ which is there for only J-quenching case can also be observed. This might be due to the fact that any reflection at L' is not perfect and there is a possibility of getting a transmitted component of the QP wave, also discussed in sections 4.3 and 4.5. The time scales $t'' = 225$ and $T = 300$ are also present.

4.7 Time evolution of the EE after a local J-quenching at $L_1 = L/3$ and h-quenching at different sites L' with $\delta = 1.0$. Here, the subsystem is of length $L_A = L/2$ which does not coincide with cut resulting to few more relevant time scales. For $L' = L/5 = 60$, the first deviation (or increase) from the single quench case appears at $t = 45$. The EE decreases at $t = t' = 65$ when QP^2_L and QP^2_R are in the same subsystem B. The next increase in the EE would be at $t = 175$ when QP^2_R enters subsystem A. The split of time scale t'', as discussed in the text, can also be seen with dips at $t''_1 = 215$ and $t''_2 = 265$. The case with $L' = 3L/4$ is all the more interesting. The deviation occurs at $t = (L' - L_A)/2 = 37.5$. The sharp decrease in this case occurs at $t = 100$ which is the time taken by QP^2_R to get reflected at L' and enter system A so that both QP^2_R and QP^2_L are in system A. But at $t = 125$, QP^2_L enters system B after getting reflected from the left boundary resulting to an increase in the EE. $t''_1 = 200$ (due to QP^2_L) and $t''_2 = 250$ (due to QP^2_R). We note extra dips around $t = 187$ which seems to be due to QP^1_L entering system B after reflection from the left boundary.
4.8 The plot shows the EE as a function of time for single and double quenches when the whole chain is non-critical \((h = 0.5)\) with \(L_1 = 100\), \(L_A = 100\) and \(L = 300\) and different \(L'\). For \(L' = L/4\), the deviation in the EE from single quenching case starts at \(t = t'/2\) where \(t' = 50\), with \(v_{\text{max}} = 2h = 1\). For \(t > 50\), both \(QP_L^2\) and \(QP_R^2\) are in system B leading to decrease in the EE which continues up to \(t_4 = 400\). Similarly, for \(L' = L/5\) one can find \(t' = 80\) and the figure shows the expected behavior. The absence of \(t''\) is explained in the text.

4.9 The EE as a function of time for the same situation as in Fig 4.8 but fixing \(h\) at 0.99. In this case the value of \(v_{\text{max}}\) is 1.98. This gives \(t' = 25.25\) for \(L' = L/4\). We do see timescales \(t'/2\) and \(t'\) along with \(t_3 \sim 101\) and \(t_4 \sim 202\). We also observe a peak near \(t'' \sim 227\).

4.10 Variation of \(f_q\) with \(\varphi\) for a critical chain. The dashed line or the lowest curve corresponds to the single \(h\)-quench case (no \(J\)-quench) which clearly is an order of magnitude smaller than the single \(J\)-quench (no \(h\) quench), the dotted line. The case of double quench is shown by solid line which more or less overlaps with the case when only \(J\)-quench is performed. Similar behavior is also observed for a ferromagnetic chain.

5.1 Phase diagram of the one-dimensional \(p\)-wave superconducting system (see Eq. (5.3)). Phases I and II are topologically non-trivial while phase III is topologically trivial. Quenching paths A and B are shown in the phase diagram.

5.2 Two isolated Majorana states are localized in two edges of a 100-site open Majorana chain in phase I \((\Delta = 0.1\) and \(\mu = 0.0\)). \(j\) labels as Majorana sites 1, 2, ...200. One can see that here probability is non-zero only if \(j\) is odd (even) for the left (right) end of Majorana chain. Here, the odd and even \(j\) sites represent \(a\) and \(b\) type of Majoranas respectively.

5.3 Energy spectrum of the Majorana chain of system size \(N = 100\) as a function of \(\xi = \Delta/w\) with \(w = 1\) and \(\mu = 0\) using (a) open boundary condition and (b) periodic boundary condition, respectively. Note that two zero-energy Majorana modes are present in case (a) but not in case (b). We mention that the energy is scaled by a factor \(1/4\) in Eq. (5.4) in comparison to Eq. (5.2).
5.4 Majorana survival probability of a zero energy Majorana for different quench schemes along the path A and probability of Majorana after quench. (a) MSP decays rapidly and does not revive significantly for quenching from phase I ($\Delta = 0.1$) to phase II ($\Delta = -0.1$). (b) Quenching from phase I ($\Delta = 0.1$) to the QCP ($\Delta = 0.0$), MSP shows nearly perfect collapse and revival with time t and scales linearly with the system size N. (c) Probability of the end Majorana at time $t = 100$ after quench at the QCP with the Majorana site j. This shows that at this instant the probability of Majorana is maximum around the center of the chain.

5.5 The probabilities of an end mode ($\Delta = 1.0$ and $\mu = 1.8$) after a quench (a) at a point ($\Delta = 1.0$ and $\mu = 2.2$) of phase III and (b) at a QCP ($\Delta = 1.0$ and $\mu = 2.0$) along the path B show same behavior as of the path A.

5.6 System is suddenly quenched within the same phase (I) from ($\Delta = 0.2$ and $\mu = 0.0$) to ($\Delta = 0.1$ and $\mu = 0.0$) and MSP becomes (a) rapidly fluctuating function of time t with a mean value of nearly 0.8 and (b) probability of the end Majorana at $t = 100$, with the Majorana sites j after quench.

5.7 Two zero energy Majorana modes of a system Hamiltonian defined in Eq. (5.10) exist in two edges of a 100-site open Majorana chain in phase I ($\Delta = 0.1$ and $\mu = 0.0$). Similarly to Fig. 5.2, here also j labels as Majorana sites 1, 2, ...200. The probabilities are non-zero only if j is odd (even) for the left (right) end of Majorana chain.

5.8 Energy spectrum of the Majorana chain (with only next-nearest-neighbor hopping and interaction as defined in Eq. (5.8)) as a function of Δ with $\mu = 0$ and $N = 100$ sites for open boundary condition. In this case also an energy scale difference exists (see caption of Fig. 5.3).

5.9 $P_m(t)$ of a right end zero energy Majorana mode after quenching along different paths. (a) MSP decays rapidly and stays minimum with some noisy fluctuation of small amplitude when the system (see Eq.(5.8)) is quenched from phase I ($\Delta = 0.1$) to the phase II ($\Delta = -0.1$) along the path A. (b) For quenching to QCP $P_m(t)$ is nearly perfect oscillatory function of time t with a interesting fact that its time period becomes half of the earlier case (see Fig. 5.4) and scales linearly with the system size N. (c) Time variation of MSP with $\Delta = 1.0$ and $\mu = 1.8$ following a quench to a point ($\Delta = 1.0$ and $\mu = 2.2$) and (d) the QCP ($\Delta = 1.0$ and $\mu = 2.0$) along the path B show same behavior as of the path A($\mu = 0$).
5.10 System changes suddenly from a phase with two Majorana fermions to a phase which contains only one Majorana mode at each end of the chain at time $t = 0$. We have set here the parameter values $\Delta = 0.1$ and $\mu = 0.0$. (a) MSP of a left end (a_2) Majorana mode shows collapse and revival with time, but at each revival there are fluctuations and also the peaks of revivals decrease rapidly. (b) While on the other hand when the system is quenched reversely the Majorana (a_1) decoheres rapidly with time (with no prominent revival) and fluctuates around zero mean.

5.11 Initially, the Hamiltonian H_2 is fixed at the parameter values $\Delta = 0.1$ and $\mu = 0.0$ and then it is quenched to the critical point ($\Delta = 0.0$ and $\mu = 0.0$) of the Hamiltonian H_1 at $t = 0$, (a) MSP of a left end (c_3) Majorana mode shows collapse and revival with time quite similar to Fig. 5.10(a); the amplitude of the revival decays rapidly if the initial value of Δ is larger, i.e., the Hamiltonian H_2 is deep in the topological phase away from the QCP. (b) There is a complete loss of coherence when the system is quenched reversely.

5.12 Phase diagram of the model Hamiltonian (5.12) for different phases of hopping parameter (a) $\phi = 0$, (b) $\phi = \pi / 4$, (c) $\phi = 2\pi / 5$ and (d) $\phi = \pi / 2$. Here, I and II are two distinct topological phases and III is the non-topological phase. The quenching path is shown using the vertical arrow.

5.13 Variation of energy levels as a function of parameter $\xi = \frac{\Delta}{w_0}$ (with $w_0 = 1$) for periodic (a) and open (b) boundary conditions with $\phi = \pi / 10$ and $N = 100$. The inverted energy levels within the gapless region of the system is denoted by the red color.

5.14 Variation of energy levels as a function of parameter $\xi = \frac{\Delta}{w_0}$ (with $w_0 = 1$) for (a) $\phi = \pi / 4$ and $N = 100$ and (b) $\phi = \pi / 10$ and $N = 150$. The inverted energy levels within the gapless region of the system is denoted by the red color.

5.15 (a) The logarithm of defect density $\ln n$ with the logarithm of quench time $\ln \tau$ for $\phi = \pi / 4$ and $\pi / 10$ are plotted. (b) The plot shows the variation of $\ln n$ with $\ln \cos \phi$ for a quench time $\tau = 200$ which confirms the ϕ dependence of n given in Eq. (5.21).

5.16 (a) The probability of defect (P_{def}) as a function of τ for different values of ϕ is being plotted which shows dip at different values of $\tau \geq \tau_c$ where the value of τ_c increases with decreasing ϕ. (b) The probability of Majorana (P_m) shows a peak exactly at those values of τ where P_{def} exhibits dips. Here, $N = 100$.

xvii
List of Figures

5.17 (a) Plots for P_{def}, P_{neg} and P_m with τ for $\phi = \pi/10$ show that all of them add up to unity. (b) The plot shows a linear variation of $\ln(\tau_c)$ as a function of $\ln(\sin \phi)$ with slope (-0.9) nearly equal to -1.

5.18 (a) Plots of P_m as a function of τ for different values of N with a fixed $\phi = \pi/5$. P_m shows peak at different values of $\tau \geq \tau_c$. (b) The figure shows a log-log plot between τ_c and N for the above ϕ with slope (=0.94) nearly equal to 1 confirming $\tau_c \sim N$.

5.19 The plot shows P_{def} as a function of τ considering overlaps between quenched Majorana state at final time and different number of positive bulk energy states (close to zero-energy) at the final parameter value. We consider the case $\phi = \pi/10$ and $N = 100$, where the number of inverted levels in both positive and negative sides of the zero energy level is 18 (see Appendix). The plot signifies that in the limit of $\tau \leq \tau_c$ ($\Delta t < \Delta t_{\text{th}}$) the initial Majorana state interacts with all the energy levels. For the other regime, $\tau \geq \tau_c$, the P_{def} calculated using only the inverted positive energy levels nearly coincides with the exact P_{def} obtained considering all positive energy bands. This clearly confirms that time evolved Majorana states mix only with the inverted levels for a transit time $\Delta t \geq \Delta t_{\text{th}}$.

6.1 (a) Overlap of instantaneous wave function with classical spin glass ground state with $\Gamma(t) = 3/\sqrt{t}$ and $h_l(t) = -0.5/\sqrt{t}$. For comparison, we have shown the result for the same system with a fixed longitudinal field $h_l = 0.1$ and same transverse annealing schedule. (b) Time variation of $P(t)$ for 5 different sets of exchange interactions which have been taken from a fixed Gaussian distribution. Annealing with $\Gamma(t) = 4/t$ and $h_l(t) = -1/t$.

D.1 (a) Plots of P_m for a non-linear time variation with $\alpha = 1.5$ as a function of τ with different values of ϕ. (b) Plots of P_m as a function of τ for different values of ϕ with $\alpha = 2$. (c) The plot shows a linear variation of $\ln \tau_c$ as a function of $\ln \sin \phi$ with slope (=0.77) nearly equal to -0.75 for $\alpha = 2$. It justifies that τ_c is proportional to $\sin \phi^{-\alpha+1)/2\alpha}$ for a fixed Δt_{op}. Here $N = 100$.