List of
Figures and Tables
List of Figures and Tables

Chapter I

Figure I.1: Schematic presentation of (A) Binary vector pBI121; (B) LeγECS insert; (C) Chimeric vector construct-pBI121 harbouring LeγECS insert.

Figure I.2: PCR based amplification of nptII and LeγECS in transformed A. tumefaciens (LBA4404).

Figure I.3: Agrobacterium–mediated transformation of Mentha arvensis: (A): Transformed M. arvensis in selection media after 10 days of transformation; (B): Primary transformed M. arvensis shoot tips, one month old; (C): Micropropagation of transformed shoot tips- two months old; (D): Transformed M. arvensis in MS medium-two and half months old (E): Root induction in transformed shoot tips, three months old plantlet; (F): Six months old transformed M. arvensis in greenhouse conditions.

Figure I.4: Molecular screening of transgenic M. arvensis (Ma2 and Ma7) by (A) genomic PCR amplification and (B) RT-PCR analysis to check the presence and expression of nptII and LeγECS. Actin was used as loading control.

Figure I.5: HPLC estimation of total GSH content in transgenic M. arvensis (Ma2 and Ma7 lines). Data are the mean ± SE of three individual experiments using plants grown independently. (W-wild; Control transgenic- plants containing the empty vector; transgenic M. arvensis – Ma2; Ma7).

Figure I.6: (A) Semi quantitative RT-PCR analysis of various genes in transgenic M. arvensis (Ma2) and wild type (W) plant. Actin was used as loading control. (B) The relative mRNA expression for each transcript in wild (W) and transgenic M. arvensis (Ma2) are represented as a bar graph by densitometric analysis using Quantity-One software. The relative expression of actin was used as a control. Error bars are standard error of the mean of the relative expression derived from three biological replicates.

Figure I.7A: Analysis of transgenic M. arvensis Ma2 under abiotic stress conditions. Estimation of total leaf protein content (mg/g fresh weight) compared to wild type (W). Error bars are standard error derived from three biological replicates.
Figure I.7B: Analysis of transgenic *M. arvensis* Ma2 line under abiotic stress conditions. Estimation of total chlorophyll content (µg/ml) of leaves compared to wild type (W). Error bars are standard error derived from three biological replicates.

Figure I.8: Morphological analysis of leaf under biotic stress. Disease symptoms developed in wild (W) and transgenic *M. arvensis* (Ma2) plants after 5 days of infection with *A. alternata* and *R. solani*, respectively. Figure shows the representative leaves images out of three biological replicates (Scale = 0.5mm).

Figure I.9A: Filtered gel images of wild type *M. arvensis* and transgenic *M. arvensis*. Some of the differentially accumulated spots are annotated within the gels.

Figure I.9B: Filtered gel images of wild type *M. arvensis* and *A. alternata* infected wild type *M. arvensis*. Some of the differentially accumulated spots are annotated within the gels.

Figure I.9C: Filtered gel images of wild type *M. arvensis* and *A. alternata* infected transgenic *M. arvensis* (Ma2). Some of the differentially accumulated spots are annotated within the gels.

Figure I.10: Functional classification of the identified proteins in *A. alternata* infected wild type *M. arvensis*. A pie chart of (A) up-accumulated and (B) down-accumulated proteins.

Figure I.11: Functional classification of the identified proteins in transgenic *M. arvensis* (Ma2). A pie chart of proteins identified in (A) control and (B) infected conditions.

Table I.1: Proteins showing differential abundance in transgenic *M. arvensis* (Ma2) in comparison to that of wild type, identified by MALDI TOF-TOF MSMS.

Table I.2: Proteins showing differential abundance in *Alternaria alternate* infected wild *M. arvensis* in comparison to that of wild control type were identified by MALDI TOF-TOF MSMS.
Table I.3: Proteins showing differential abundance in infected transgenic *M. arvensis* (Ma2) and compared with the wild type identified by MALDI TOF-TOF MSMS.

Chapter II

Figure IIA.1: Seed inoculation and germination of *Arabidopsis thaliana* (Col 0) in MS medium: a: 3d old germinated seedlings; b: 7d old seedlings; c: 2 wk old seedlings in MS medium; d: rosettes of 2wk old seedling; e: A 2wk old seedling with well developed rosettes and roots.

Figure IIA.2: Semi-quantitative RT-PCR analysis for expression of *PR1* in GSH fed Col 0 in comparison to Col 0. *Actin3* was used as loading control.

Figure IIA.3.a: Colloidal Coomassie stained 2-DE gel images of *Arabidopsis thaliana* Col 0 and *pad2-1*.

Figure IIA.3.b: Colloidal Coomassie stained 2-DE gel images of *Arabidopsis thaliana* Col 0 and GSH fed Col 0.

Figure IIA.4: Filtered gel images of 2-DE gels for *Arabidopsis thaliana* (Col 0, *pad2-1* and GSH fed Col 0). Some of the SSPs showing differential accumulation are annotated in the gels.

Figure IIA.5: Pie-chart representation of the identified proteins on the basis of functional categorisation. Proteins identified in a: Col 0 vs. GSH fed Col 0, b: Col 0 vs. *pad2-1*.

Table IIA.1: MALDI TOF-TOF MSMS based identification of protein differentially expressed in *pad2-1* in comparison to Col 0.

Table IIA.2: MALDI TOF-TOF MSMS based identification of protein differentially expressed in GSH fed Col 0 in comparison to Col 0.

Figure IIB.1: The 3D view for gene expression profiles of samples (red: Col 0, blue: GSH fed Col 0). Every dot represents a sample. The first three principal components are plotted.

Figure IIB.2: The hierarchical heat map image of differentially expressed genes by GSH feeding as identified by microarray. This has been generated on the basis of log2 normalized intensity value. Red colour shows over-expressed genes (>2.0) and blue color shows under-expressed genes (<2.0). (b) Magnified image for differentially overexpressed genes in GSH fed Col 0 (c) Magnified image for top overexpressed genes in GSH fed Col 0.
Figure IIB.3.a: Gene ontology slim term gene counts of the differentially expressed genes for biological process. Up-regulated genes in black and down-regulated genes in grey.

Figure IIB.3.b: Gene ontology slim term gene counts of the differentially expressed genes for molecular function. Up-regulated genes are shown in black and down-regulated genes are shown in grey.

Figure IIB.3.c: Gene ontology slim term gene counts of the differentially expressed genes for cellular component. Up-regulated genes are shown in black and down-regulated genes are shown in grey.

Figure IIB.4.a: Hierarchical tree graph of over-represented GO terms in up-regulated genes by singular enrichment analysis generated by agriGO. Boxes in the graph show GO terms labeled by their GO ID, term definition and statistical information. The significant terms (adjusted P<0.01) are marked with color, while non-significant terms are shown as white boxes. The degree of color saturation of a box correlates positively with the enrichment level of the term. Solid, dashed and dotted lines represent two, one and zero enriched terms at both ends connected by the line, respectively. The rank direction of the graph runs from top to bottom.

Figure IIB.4.b: Hierarchical tree graph of over-represented GO terms in downregulated genes by singular enrichment analysis generated by agriGO. Boxes in the graph show GO terms labeled by their GO ID, term definition and statistical information. The significant terms (adjusted P<0.01) are marked with color, while non-significant terms are shown as white boxes. The degree of color saturation of a box correlates positively with the enrichment level of the term. Solid, dashed and dotted lines represent two, one and zero enriched terms at both ends connected by the line, respectively. The rank direction of the graph runs from top to bottom.

Figure IIB.5: Functional annotation of differentially expressed genes as identified by MapMan. Detailed annotation of hormone related genes has been shown in inset.

Figure IIB.6: Metabolism mapping of differentially expressed gene by MapMan. Detailed annotation of secondary metabolism related genes has been shown in inset.

Figure IIB.7: Semi-quantitative RT-PCR analysis of some of the up-regulated genes for validation of microarray experiment.

Table IIB.1.a: List of genes identified as up-regulated (P > 0.05) by microarray analysis in GSH fed A. thaliana Col 0
Table IIB.1.b: List of genes identified as down-accumulated (P > 0.05) by microarray analysis in GSH fed *A. thaliana* Col 0.

Table IIB.2: Highly significant pathways as analysed by KEGG for genes identified by microarray analysis in GSH fed *Arabidopsis thaliana* Col 0.

Table IIB.3: List of differentially expressed genes identified by microarray, in GSH fed *Arabidopsis thaliana* Col 0 categorised on the basis of cellular function by Mapman.

Table IIB.4: List of differentially expressed genes identified by microarray, in GSH fed *Arabidopsis thaliana* Col 0 categorised on the basis of metabolism by Mapman.

Table IIB.5: Changes in gene expression as estimated by microarray and by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR).