INDEX

ABBREVIATIONS 1-4
SYNOPSIS OF THE WORK 5-7
INTRODUCTION 8-23
➢ Cigarette smoke and its constituents 9-10
➢ Effects of cigarette smoking 10
➢ Cigarette smoke induced oxidative stress 10-12
➢ Cigarette smoke induced cell death 12-15
➢ Effect of cigarette smoke on immunity 15-16
➢ Cigarette smoke induced pulmonary diseases 17-18
➢ Chronic obstructive pulmonary disease 19-20
➢ Chronic bronchitis 20
➢ Emphysema 20-21
➢ Cigarette smoke induced lung cancer 21-22
➢ Objectives of the study 23

CHAPTER-I 24-44

Identification of new gene(s) involved in CS induced cellular death using multicopy suppressor technique exploiting S.cerevisiae as the model system

Background 25-26

Materials and Methods 27-35
Results 36-43

- Standardization of lethal dose of CSE for *S. cerevisiae* cells 36
- Identification of new gene(s) involved in CSE-induced cell death by multicopy suppressor technique 37
- Identification of gene(s) present on multicopy suppressor candidates 37-38
- Role of amino acid transporters *BAP2* and *TAT1* on cigarette smoke induced death in *S. cerevisiae* 39
- Role of nutrient availability on cigarette smoke induced cell death in *S. cerevisiae* 39-42
- Effect of *BAP2* and *TAT1* deletion on CSE induced cell death of *S. cerevisiae* 42-43
- Effect of CSE on expression level of *BAP2* and *TAT1* 43

Discussion 44

CHAPTER-II 45 - 77

*Investigation of the observation obtained in *S. cerevisiae* in in vitro cultured lung epithelial A549 cell line*

Background 46-48

Materials and Methods 49-54

Results 55-76

- CSE mediated downregulation of LAT1 55
- Effect of LAT1 overexpression and excess leucine on CSE-induced cell death 55-59
- LAT1 and excess leucine-mediated cell survival is triggered through mTOR activation 60-67
- Excess leucine and LAT1 overexpression prevents CSE-induced autophagy 67-69
CHAPTER-III 78-91

Validation of the ex vivo observations in guinea pig model

Background 79

Materials and Methods 80-83

Results 84-91

- Effect of excess dietary leucine supplement of CS-induced lung damage 84-86
- Effect of dietary leucine supplement on CS-induced ROS in guinea pig lung 86-87
- Effect of excess dietary leucine supplement on pre-existing emphysematous lung damage 87-90

Discussion 91

CHAPTER-IV 92-104

To study the effect of vitamin C on CS-induced NF-κB activation in guinea pig model

Background 93-96

Materials and Methods 97-98

Results 100 - 102

- Effect of vitamin C on nuclear translocation of c-Rel and p50 in CS exposed guinea pig lung 99-100
- Effect of vitamin C on CS induced degradation of \(\text{IkB}_\varepsilon \) and \(\text{IkB}_\alpha \) in CS exposed guinea pig lung 101

- Effect of vitamin C on CS induced cellular ROS level in guinea pig lung 101-102

Discussion 103-104

CONCLUSION 105-106

REFERENCES 107-120

PUBLICATIONS 121-122

NOTES