Contents

List of Figures xi

1 Introduction 1
 1.1 Plasma: The fundamental form of the Universe 1
 1.2 Nonlinearity: It’s reality 2
 1.3 Nonlinear waves and wave breaking in plasma 4
 1.4 Phase-Mixing: A potential cause of wave-breaking 5
 1.5 Wave-breaking: Its importance in plasma based particle accelerator and other applications 7
 1.6 Lagrangian description: An useful way to treat the convective nonlinearity 8
 1.7 Motivation for studying nonlinear wave dynamics in relativistic plasmas 11
 1.8 Thesis Outline 12

2 Nonlinear electron oscillation in finite temperature plasma 14
 2.1 Introduction 14
 2.2 Basic Equations 15
 2.3 Nonlinear Analysis 17
 2.4 Approximate Solution 22
 2.5 Summary 26
Contents

3 Lower Hybrid Oscillation in Cold Viscous Plasma 28
 3.1 Introduction ... 28
 3.2 Basic equations 29
 3.3 Numerical results 31
 3.4 Summary .. 32

4 Phase mixing of upper hybrid oscillations in a cold inhomogeneous plasma placed in an inhomogeneous magnetic field 35
 4.1 Introduction ... 35
 4.2 Basic Equations 37
 4.3 Linear Analysis: Mode coupling as a signature of wave-breaking 38
 4.4 Nonlinear Analysis 40
 4.5 A brief review on Homotopy perturbation method 43
 4.6 Approximate Solution 45
 4.7 summary .. 50

5 Breaking of upper hybrid oscillation in relativistic plasma 52
 5.1 Introduction ... 52
 5.2 Basic Formulation of Relativistic Plasma 54
 5.3 Formulation of Relativistic Upper Hybrid Oscillation 60
 5.4 Solution .. 62
 5.5 Analysis of exact solution 66
 5.6 Weak Relativistic Limit 69
 5.7 Summary .. 73

6 Nonlinear Alfvén Wave 75
 6.1 Introduction ... 75
 6.2 Basic Equations to describe dispersive Alfvén waves 77
 6.3 Linear mode .. 82
 6.4 Nonlinear analysis 82
 6.5 Analysis by Lagrangian mass variable 84
 6.6 Weak amplitude nonlinear wave: 85
 6.7 Nonlinear solution by separation of variable method 86
 6.7.1 A First Integral 92
 6.7.2 Analytical Support of Numerical Results 93
 6.8 A possible application for magnetic star formation: 94
 6.9 summary .. 98

7 Summary .. 100
 7.1 Summary of the thesis 100
Contents

7.2 Scope for future .. 103

Appendix A Approximate solution of nonlinear Alfvén wave 106
Bibliography .. 118
Bibliography .. 118