INDEX

CHAPTER 1

1.0 INTRODUCTION 7

1.01 Cell types and symmetry in cell division 7

1.02 Role of spindle positioning in cell division 9

1.03 Cortical regulators of cell division and spindle positioning 14

1.04 Microtubules: Role in cell division 19

1.05 E3 ligases that regulate spindle morphology, integrity and positioning 19

1.06 Mahogunin Ring Finger-1 (MGRN1): One Protein, Many Roles 21

1.07 Objective of the project 22

CHAPTER 2: MATERIALS AND METHODS

2.01 Cell culture techniques and Transfection 24

2.01.01 Cell lines 24

2.01.02 Cell culture techniques 24

2.02 Immunocytochemistry studies 25

2.02.01 Sample preparation 25

2.02.02 Fluorescence microscopy and imaging 26

2.02.03 Image analyses and calculation of spindle tilt. 27

2.03 Plasmids and antibodies 27

2.04 Western Blotting 28

2.05 Native gel electrophoresis 28

2.06 Separation of tubulin into polymerised and unpolymerised fractions 29

2.07 FACS analysis 29
CHAPTER 3: MGRN1: NOVEL INTERACTOR OF α-TUBULIN AND IMPLICATIONS IN CELL DIVISION

3.01 INTRODUCTION 38
3.02 OBSERVATIONS

3.02.01 Interaction of endogenous MGRN1 with α-tubulin in mitotic cells. 39
3.02.02 Catalytically inactive MGRN1 affects the axis of cell division. 45
3.02.03 No change in expression of motor protein dynein. 51
3.02.04 MGRN1 affects α-tubulin polymerization. 54
3.02.05 MGRN1 does not affect γ-tubulin polymerisation 63
3.02.06 MGRN1 affects α-tubulin polymerisation by its polyubiquitination. 66
3.02.07 Polyubiquitination of α-tubulin affects spindle pole orientation. 75

3.03 DISCUSSION 77

CHAPTER 4: MGRN1 MEDIATED CORTICAL REGULATION OF MITOSIS

4.01 INTRODUCTION 82
4.02 RESULTS
4.02.01 Spindle positioning defects observed in case of cells expressing deletion mutants of MGRN1 85
4.02.02 Altered localization of the members of the tripartite complex in mitotic cells expressing functionally inactive MGRN1 89
4.02.03 Biochemical studies show that MGRN1 increases the amount of Gαi in the cell 92
4.02.04 Lateral displacement observed upon overexpression of deletion mutants of MGRN1 are caused by recruitment of excess Gαi on the membrane during mitosis 95
4.02.05 Ubiquitination by MGRN1 does not play any role in the increase of Gαi in the cell 98

4.03 DISCUSSION
MGRN1 mediated regulation of the recruitment of cortical proteins: Non canonical function of MGRN1 101

CHAPTER 5: DUAL ROLE OF MGRN1 IN MITOSIS 107

CHAPTER 6: FUTURE PERSPECTIVES

6.01 INTRODUCTION 113
6.02 OBSERVATIONS
 6.02.01 Loss of catalytic activity of MGRN1 slows the rate of neuronal differentiation in cells 114
 6.02.02 Biochemical studies indicate that cells depleted for MGRN1 have a slower rate of neuronal differentiation 116
6.03 Study of the role of MGRN1 in neuronal differentiation: correlation of physiological defects to cellular pathways 117

7.0 REFERENCES 124