List of figures

Figure 1.1 Scanning electron microscopic image of *M. tuberculosis* .. 3
Figure 1.2 Estimated TB cases in the year 2012 ... 8
Figure 1.3 Structure of RNAP core .. 11
Figure 1.4 Structure of RNAP holo .. 13
Figure 1.5 Steps of transcription ... 13
Figure 1.6 Three models proposed for RNAP active centre translocation during abortive transcription initiation ... 14
Figure 1.7 Schematic diagram of structural transition during transcription initiation and elongation ... 15
Figure 1.8 Structure of RNA hairpin .. 16
Figure 1.9 Model for Rho dependent termination ... 16
Figure 1.10 Genome of *M. tuberculosis* ... 18
Figure 1.11 σ-factors of *M. tuberculosis* ... 19
Figure 2.1 Cloning of genes that encode for different subunits of *M. tuberculosis* RNAP .. 44
Figure 2.2 Cloning, expression and purification of recombinant Mtb RNAP core 45
Figure 2.3 Cloning, expression and purification of recombinant Mtb sigma factor A 46
Figure 2.4 Western Blot analysis of Mtb RNAP against antibodies of β and β' subunits of *E. coli* RNAP ... 47
Figure 2.5 *In vitro* transcription assays with Mtb RNAP core .. 50
Figure 2.6 *In vitro* transcription assays with Mtb RNAP at three different Mtb promoters .. 51
Figure 2.7 *In vitro* transcription assays with alternative sigma factors 52
Figure 2.8 *In vitro* transcription assay with Mtb RNAP in association with Mtb CRP on WhiB1 promoter .. 53
Figure 2.9 Cloning, expression and purification of recombinant Mtb RNAP core enzyme without omega (ω) subunit ... 54
Figure 2.10 Effect of omega subunit on transcriptional activity of Mtb RNAP core 55
Figure 2.11 Cloning, expression and purification of recombinant Mtb RNAP holoenzyme ... 56
Figure 2.12 *In vitro* transcription assays with Mtb RNAP holo 57
Figure 2.13 Cloning, expression and purification of recombinant Mtb RNAP holoenzyme with omega subunit .. 58
Figure 2.14 Effect of ω subunit on transcriptional activity of Mtb RNAP holo 59
Figure 2.15 *In vitro* transcription assay to compare the transcriptional activities of Mtb RNAP samples prepared by three different methods .. 60
Figure 2.16 Comparison of transcriptional activities of Mtb RNAP prepared by expressing the enzyme either at 37°C or 16°C ... 61
Figure 2.17 *In vitro* transcriptional assay to assess the interactions between Mtb core with *E. coli* σ70 and *E. coli* RNAP core and Mtb σA .. 62
Figure 3.1 Fluorescence based *in vitro* transcription assays to determine the role of omega subunit and temperature of induction on transcriptional activity of Mtb RNAP ... 86
Figure 3.2 Fluorescence based *in vitro* transcription assays with Rifampicin 87
Figure 3.3 Synthesis of 4-methyl umbelliferyl-CTP ... 90
Figure 4.1 Basic principle of mCherry fluorescence based reporter assay 100
Figure 4.2 Recombinant in vivo Mtb reporter assay using Mtb σ^A specific
 promoter sinP3 .. 102
Figure 4.3 In vivo recombinant Mtb reporter assay: Dependence of mCherry
 expression as a function of E. coli growth ... 103
Figure 4.4 FACS data showing distribution of cells showing mCherry expression 104
Figure 4.5 Recombinant in vivo Mtb reporter assay using Mtb σ^A and its specific
 promoter rrnB1 ... 105
Figure 4.6 Recombinant in vivo Mtb reporter assay using Mtb σ^E and its specific
 promoter sigBpr ... 106
Figure 4.7 Recombinant in vivo Mtb reporter assay using Mtb CRP and its specific
 promoter WhiB1 .. 107
Figure 4.8 In vitro transcriptional activity assay to study the interactions of Mtb and
 E. coli RNAP and CRP on WhiB1 promoter .. 108
Figure 5.1 Cloning, expression and purification of Intein-CBD tagged Mtb RNAP core 125
Figure 5.2 Cysteine Fluorescein labeling and purification of RNAP core 126
Figure 5.3 Purification and labeling of sigma factors of Mtb ... 127
Figure 5.4 In vitro transcription assay with unlabelled and labelled RNAP and σ^A 128
Figure 5.5 Fluorescence Resonance Energy transfer for determination of binding
 affinities of sigma factors to Mtb RNAP core ... 129