Table of Contents

LIST OF FIGURES AND TABLES

i

LIST OF ABBREVIATIONS

V

ABSTRACT

IX

Chapter 1: PROGRAMMED GENOMIC DNA REARRANGEMENTS: AN OVERVIEW

1.1 **INTRODUCTION**

1.2 **DNA AMPLIFICATIONS AND DELETIONS**

1.2.1 DNA amplifications

 1.2.1.1 *Amphibian rRNA genes amplification*
 1.2.1.2 *Ribosomal DNA amplification in ciliates*
 1.2.1.3 *Chorion gene amplification in Drosophila*
 1.2.1.4 *Cocoon formation in Sciarids*

1.2.2 DNA deletions

1.3 **RE-ASSORTING DNA SEGMENTS**

1.3.1 Generation of antibody diversity in mammals

 1.3.1.1 *Diversity in the antigen-binding region*
 1.3.1.2 *Diversity in the effector region*

1.3.2 Generation of T cell receptor diversity

1.3.3 Segmental gene conversion in chicken

1.3.4 Scrambling of gene segments order in ciliates

1.4 **REGULATION OF GENE EXPRESSION**

1.4.1 Most DNA rearrangements are reversible

 1.4.1.1 *Expression control by DNA inversion*

 1.4.1.1.1 Phase inversion in *Salmonella*
 1.4.1.1.2 Host range specificity of Mu phage

 1.4.1.2 *Expression control by DNA transposition*
1.4.1.2.1 Switching of mating type in Yeast 11
1.4.1.2.2 Coat protein switching in Trypanosomes 12
1.4.1.2.3 Antigenic variation in Borrelia 14
1.4.1.2.4 Antigenic variation of pili in Neisseria 14

1.4.1.3 Expression control at translation level 15

1.4.2 Irreversible DNA rearrangements 15

Chapter 2:
BANDED KRAIT MINOR SATELLITE (BKM) DNA SEQUENCES: DISTRIBUTION AND ROLE IN SEX CHROMOSOMAL ORGANIZATION

2.1 EVOLUTIONARY CONSERVATION AND FUNCTIONAL SIGNIFICANCE OF BKM SEQUENCES 17
2.2 BKM IN SNAKES AND BIRDS 17
2.3 BKM IN MICE 18
2.4 BKM IN HUMANS 19
2.5 BKM IN DROSOPHILA 20
2.6 SEQUENCE ANALYSIS AND TRANSCRIPTION PATTERN OF BKM 20
2.7 BKM IS A STRUCTURAL AND FUNCTIONAL COMPONENT OF SEX CHROMOSOMAL CHROMATIN 21

Chapter 3:
INTRODUCTION

Background and objectives of the present study 23

Chapter 4:
MATERIALS AND METHODS

EXPERIMENTAL MATERIALS
4.1 BACTERIAL STRAINS 26
4.2 PLASMIDS 26
4.3 FLY STRAIN AND CULTURE CONDITIONS USED 26
4.4 CLONES/PROBES USED
 a Bkm-2(8) 26
 b pUC18-(GATA)_{16} 27
4.5 BACTERIAL MEDIA, ANTIBIOTICS AND COMMONLY USED SOLUTIONS

4.6 CHEMICALS

EXPERIMENTAL METHODS

4.7 STERILIZATION

4.8 SILICONIZATION

4.9 PREPARATION OF FROZEN COMPETENT CELLS

4.10 TRANSFORMATION OF THE COMPETENT CELLS

4.11 SMALL SCALE ISOLATION (MINIPREP) OF PLASMID DNA

4.12 LARGE SCALE ISOLATION OF PLASMID DNA

4.13 PURIFICATION OF THE PLASMID DNA

4.14 ESTIMATION OF CONCENTRATION AND PURITY OF DNA

4.15 RESTRICTION ENZYME DIGESTION OF DNA

4.16 PURIFICATION OF INSERT DNA FROM AGAROSE GEL

4.17 DEPHOSPHORYLATION OF VECTOR DNA

4.18 SUBCLONING AND LIGATION

4.19 RESTRICTION MAPPING

4.20 CHROMOSOME PREPARATION

4.21 IN SITU HYBRIDIZATION

4.22 EMBRYO COLLECTION

4.23 COLLECTION OF THIRD INSTAR LARVAE

4.24 COLLECTION OF SALIVARY GLANDS, IMAGINAL DISCS AND BRAIN OF THIRD INSTAR LARVA

4.25 EXTRACTION OF GENOMIC DNA FROM EMBRYOS, LARVAE AND FLIES

4.26 ISOLATION OF GENOMIC DNA FROM SALIVARY GLANDS, IMAGINAL DISCS AND BRAIN OF THIRD INSTAR LARVA

4.27 RNASE TREATMENT OF DNA

4.28 AGAROSE GEL ELECTROPHORESIS AND SOUTHERN TRANSFER

4.29 PREPARATION OF RADIOLABELED PROBES
4.29.1 Nick translation
4.29.2 Multiprime labeling
4.29.3 3H labeling of probes
4.29.4 33P labeling of probes
4.29.5 Endlabeling of DNA

4.29.5.1 Endlabeling of (GATA)_{16} and Bkm-2(8)
4.29.5.2 "Crush and Soak" method
4.29.5.3 Sephadex G50 column chromatography

4.30 MEASUREMENT OF RADIOACTIVITY IN NUCLEIC ACIDS

4.31 SOUTHERN HYBRIDIZATION

4.32 POST-HYBRIDIZATION WASHING AND AUTORADIOGRAPHY

4.33 COLLECTION OF TISSUES FOR PROTEIN ISOLATION

4.34 QUANTITATION OF PROTEINS

4.35 PREPARATION OF TOTAL PROTEIN EXTRACT

4.36 SLOT BLOT-BINDING-ASSAY

4.37 ISOLATION OF NUCLEI FROM DROSOPHILA TISSUES

4.38 PREPARATION OF NUCLEAR EXTRACTS

4.39 ELECTROPHORETIC MOBILITY SHIFT ASSAY

4.40 DNA SEQUENCING

4.41 SEQUENCE ANALYSIS

4.42 PRIMERS USED

Chapter 5:
RESULTS

5.1 MOLECULAR ANALYSIS OF BKM-ASSOCIATED GENOMIC CLONES, CS314 AND CS316

5.1.1 Restriction analysis, Subcloning and Restriction mapping of CS314 and CS316

5.1.1.1 Restriction analysis of CS314 and CS316
5.1.1.2 Subcloning of CS314 and CS316
5.1.1.3 Inserts of pF3(314) and pF3B(316) are Bkm-2(8) positive
5.1.1.4 Restriction map of CS314
5.1.1.5 Restriction map of CS316
5.1.2 Molecular characterization of Subclones of CS314 and CS316

5.1.2.1 Chromosomal localization of different subclones
5.1.2.2 Genomic organization of different subclones

5.1.2.2(A) CS314
5.1.2.2(B) CS316

5.1.2.3 Differential arrangement of DNA is detected by various enzymes

5.1.2.4 Distribution of the additional bands in different larval tissues

5.1.3 Nucleotide sequencing of f3-314 and f5-316

5.1.3.1 Nucleotide sequencing of the insert of pf3(314)
5.1.3.2 Sequence analysis of f3-314
5.1.3.3 Nucleotide sequence analysis of f5-316
5.1.3.4 Comparison of nucleotide sequences of f3-314 and f5-316

5.2 SEX AND TISSUE-SPECIFIC BKM-BINDING PROTEIN IN DROSOPHILA MELANOGASTER

5.2.1 Detection of Bkm-binding Proteins
5.2.2 Binding of dBBP is affected by Salt concentration
5.2.3 Sequence specificity of dBBP
5.2.4 Effect of EDTA on the binding of dBBP
5.2.5 Tissue-specific expression of dBBP

DISCUSSION

REFERENCES