LIST OF FIGURES

CHAPTER 1

<table>
<thead>
<tr>
<th>Fig. 1.1.</th>
<th>Typical ternary phase diagram showing quasi-binary and pseudo-binary sections.</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.2.</td>
<td>Crystal structures appearing in different concentration ranges for Fe(_3)V Ge alloy system [7].</td>
<td>4</td>
</tr>
<tr>
<td>Fig. 1.3.</td>
<td>Mössbauer spectra for as quenched alloys of Fe-50 at% Co (a), Fe-49 at% Co-2 at% Mo (b) and Fe-48 at% Co-4 at% Mo (c)[15].</td>
<td>7</td>
</tr>
<tr>
<td>Fig. 1.4.</td>
<td>Kinetic paths for ternary (ABC) alloys started at same initial state but ordered at different temperatures [15].</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 1.5.</td>
<td>Numerically obtained results by Anthony and Fultz (20) from Master Equation formalism for variation of B2, DO(_3), and B2 order parameters in Fe(_3)Al.</td>
<td>11</td>
</tr>
<tr>
<td>Fig. 1.6 a.</td>
<td>Kinetic paths of LRO for Fe(_3)Al as measured using X-ray diffraction [57].</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 1.6 b.</td>
<td>Kinetic paths of short range ordering (SRO) for Fe(_x)Al using Mössbauer spectroscopy [57].</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 1.7 a.</td>
<td>(\gamma)-ray emission and absorption lines with a shift due to the recoil energy (E_R) for gamma emission and absorption from a nucleus at rest.</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 1.7 b.</td>
<td>Small overlap of emission and absorption lines due to Doppler broadening ((E_D)) for a gas of atoms at finite temperature.</td>
<td>17</td>
</tr>
</tbody>
</table>
Fig. 1.8 a. Schematic diagram of Mössbauer experiment.
 b. Schematic representation of resonance emission and absorption of γ-ray.
 c. Typical Mössbauer spectrum which consists of intensity of γ-rays detected by the detector as a function of relative velocity between source and absorber.

Fig. 1.9. Representation of Isomer shift (a), Nuclear Zeeman Splitting (b), Quadrupole splitting (c), Thermal red shift (d) and their typical Mössbauer spectra.

Fig. 1.10. Typical FMR first derivative (dP/dH) absorption spectrum.

CHAPTER 2

Fig. 2.1. Block diagram of Mossbauer Spectrometer.

Fig. 2.2. Flow chart to implement low dead time in data acquisition.

Fig. 2.3. Set-up for Variable temperature Mossbauer experiments using closed cycle refrigerator.

Fig. 2.4. Block diagram of FMR Spectrometer.

Fig. 2.5 a. Quartz rod with a half cut at one end and a groove to place the sample.
 b. Sample is sandwiched between the half cut end of the quartz rod and quartz piece. Copper-constantan thermocouple is attached to the quartz rod.
c. The quartz rod with sample and thermocouple is pushed into a quartz tube.

Fig.2.6 a. Horizontal-parallel (\parallel^H) sample geometry in which the static magnetic field H lies in the sample plane and is directed along the length of the sample.

b. Vertical-parallel (\parallel^V) sample geometry in which the static magnetic field H lies in the sample plane and is directed along the breadth of the sample.

CHAPTER 3

Fig.3.1. DO_3 structure with A, B, C, and D sublattices having origins at $(0,0,0)$, $(1/4,1/4,1/4)$, $(1/2,1/2,1/2)$ and $(3/4,3/4,3/4)$ along the body diagonal.

Fig.3.2 a. Variation of AC susceptibility (χ) with temperature (T) for Fe_xMnSi alloys.

b. Variation of dc magnetisation (M) with temperature (T) for $x = 0.75$ and $x = 0.90$ alloy compositions.

Fig.3.3. FMR power absorption derivative spectra at different temperatures for Fe_2MnSi alloy.

Fig.3.4. Variation of the FMR resonance field (H_{res}) with temperature (T) in Fe_xMnSi alloys.

Fig.3.5. The dependence of saturation magnetisation (M_S) on temperature (T) for $\text{Fe}_x\text{Mn}_y\text{Si}$ alloys.
Fig. 3.6. Variation of \(\frac{[H_S(\Theta) - H_S(T)](D(T))^{3/2}}{Z(3/2, \tau_{HF})} \) with \(T^{3/2} \) in \(Fe_3 Mn Si \) alloys.

Fig. 3.7. Variation of FMR linewidth (\(\Delta H \)) with \(T/T_{\text{min}} \) in \(Fe_3 Mn Si \) alloys.

Fig. 3.8. Mössbauer spectra and their hyperfine field distributions (calculated using model-independent Le Cær program) at different temperatures for \(Fe_{2.25}Mn_{0.75}Si \) alloy.

Fig. 3.9. Correlation between Fe hyperfine field and magnetic moment (\(\mu_F \)) for AC site Fe atoms. The number of Mn nn atoms for these sites is indicated by \(n \).

Fig. 3.10. Temperature dependence of hyperfine field (\(H_{hf} \)) for Fe(AC) atoms having different number of Mn near neighbours (\(n \)) for \(Fe_{2.25}Mn_{0.75}Si \) alloy.

Fig. 3.11. Mössbauer spectra and their hyperfine field distributions (calculated using model-independent Le Cær program) at different temperatures for \(Fe_{2.1}Mn_{0.9}Si \) alloy.

Fig. 3.12. Temperature dependence of hyperfine field (\(H_{hf} \)) for Fe(AC) atoms having different number of Mn near neighbours (\(n \)), and Fe(B) atoms with 8 Fe and 6 Fe near neighbours for \(Fe_{2.1}Mn_{0.9}Si \) alloy.
Fig. 3.13. Variation of mean hyperfine field (H_{hf}) and isomer shift parameters (A and B defined in Eq. 3.12) with temperature (T) for $Fe_{2}Mn_{2}Si$ alloy.

Fig. 3.14. Temperature dependence of isomer shift (δ) for n Fe(AC) atoms having different number of Mn near neighbours (n) for $Fe_{2}Mn_{n}Si$.

Fig. 3.15. Mössbauer spectra and their hyperfine field distributions (fitted to two Gaussians) at different temperatures for $Fe_{2}MnSi$ alloy.

Fig. 3.16. Mössbauer spectra and their hyperfine field distributions (fitted to two Gaussians) at different temperatures for $Fe_{8}Mn_{1}Si$ alloy.

Fig. 3.17 a. Temperature dependence of hyperfine field H_{hf}^{L} (lower field) and H_{hf}^{H} (higher field) for $Fe_{2}MnSi$ alloy.

b. Variation of area under low field peak (LFS) and high field peak (HFS) for $Fe_{2}MnSi$.

Fig. 3.18 a. Temperature dependence of hyperfine field H_{hf}^{L} (lower field) and H_{hf}^{H} (higher field) for $Fe_{8}Mn_{1}Si$ alloy.

b. Variation of area under low field peak (LFS) and high field peak (HFS) for $Fe_{8}Mn_{1}Si$.

Fig. 3.19 a. Schematic representation of Fe and Mn atomic moments on AC and B sites and their exchange interactions with neighbours.

b. Canting of Mn spins at low temperatures.
c. Frustration at Fe(AC) site due to antiferromagnetic ordering on B sublattice.

Fig.3.20. Magnetic phase diagram for Fe$_{x}$ Mn Si alloy system.

CHAPTER 4

Fig.4.1. The complete fitted spectrum for Fe$_{x}$Si using the stripping procedure as discussed in Section 4.2.

Fig.4.2. (a) and (b) are the residual spectra for Fe$_{2.75}$Cr$_{0.25}$Si after stripping B and AC fields respectively. The Mössbauer spectrum fitted with a field distribution comprising of five gaussians is shown in (c) and the corresponding field distribution is shown in (d).

Fig.4.3. Mössbauer spectra of Fe$_{x}$Cr$_{x}$Si alloys for $x \geq 0.5$, fitted to a field distribution consisting of a superposition of four Gaussian peaks (Eq. 4.1) and the corresponding hyperfine field distributions.

Fig.4.4. Variation of hyperfine fields with Cr concentration for different nn configurations.

Fig.4.5. Probability of low field peak, P(0), as a function of Cr concentration.

Fig.4.6. Probability of Fe(B) sites with 8 Fe 1nn, P(8), vs. probability of Fe(AC) sites with 4 Fe 1nn, P(4).
Fig. 4.7 a. The possible ordered structures in $\text{bcc Fe}_3\text{Si}$ (i) B2; (ii) DO_3; (iii) B32.

b. Calculated probabilities of Fe atoms with different number of Fe atoms in 1 nn shell for these structures.

Fig. 4.8. Dependence of isomer shift δ (relative to α-Fe) on Cr concentration for various nn configurations.

CHAPTER 5

Fig. 5.1. Phase diagram for disordered Fe-Mn-Al alloy system [9].

Fig. 5.2. Room temperature Mossbauer spectra for disordered $\text{Fe}_x\text{Mn}_x\text{Al}$ alloys and hyperfine field distributions calculated using model-independent Le Caër program.

Fig. 5.3 a. Variation of average hyperfine field, H_{hf}, with Mn concentration (x) for disordered $\text{Fe}_x\text{Mn}_x\text{Al}$ alloys.

b. Variation of Curie temperature, T_C, with Mn concentration x for disordered $\text{Fe}_{3-x}\text{Mn}_x\text{Al}$ alloys.

Fig. 5.4. Room temperature Mössbauer spectra for ordered $\text{Fe}_x\text{Mn}_x\text{Al}$ alloys and hyperfine field distributions calculated using model-independent Le Caër program.

Fig. 5.5. Dependence of hyperfine field on number of Fe atoms as near neighbours of an Fe atom in ordered $\text{Fe}_{2.4}\text{Mn}_0.6\text{Al}$.
Fig. 5.6. Temperature dependence of magnetisation for ordered Fe$_{18}$Mn$_{12}$Al alloy.

Fig. 5.7. Room temperature Mössbauer spectra for Fe$_{18}$Mn$_{12}$Al annealed at different times, and corresponding hyperfine field distributions obtained by fitting data to two Gaussian field distributions.

Fig. 5.8. Time dependence of the intensity of low field Gaussian (a) and high field Gaussian (b).

CHAPTER 6

Fig. 6.1. Variation of lattice parameter (a) for fcc unit cell with Si concentration (x) in Ni$_3$Fe$_x$Si$_{1-x}$ system.

Fig. 6.2. Quasi-binary section of the phase diagram for Ni$_3$Fe$_x$Si$_{1-x}$ alloy system.

Fig. 6.3. Mossbauer spectra for splat quenched alloys: Ni$_3$Fe$_x$ (a), and Ni$_3$Fe$_{0.75}$Si$_{0.25}$ (b).

Fig. 6.4. Mossbauer spectra for ordered Ni$_3$Fe$_x$Si$_{1-x}$ alloys of various compositions subjected to the ordering heat treatment as discussed in text.

Fig. 6.5. Observed variation of average hyperfine field H_{hf} in the Ni$_3$Fe$_x$Si$_{1-x}$ alloy system.

CHAPTER 7

Fig. 7.1. B20 cubic structure of FeSi.

Fig. 7.2. Powder X-ray diffraction patterns for (Fe$_{1-x}$Ni$_x$)$_{0.5}$Si$_{0.5}$ alloys with $x = 0$, 0.25 and 0.6.

Fig. 7.3. Mossbauer spectra of (Fe$_{1-x}$Ni$_x$)$_{0.5}$Si$_{0.5}$ alloys for various nickel concentrations (x).
Fig. 7.4. Variation of cubic lattice parameter (a), isomer shift δ (relative to α-Fe) and quadrupole splitting A with nickel concentration (x) in $(Fe_{1-x}Ni_x)_{0.5}Si_{0.5}$ alloys.