Figure 3.1. EDS pictures of the present glass system

$x\text{ZnF}_2-(20-x)\text{ZnO-40As}_2\text{O}_3-40\text{TeO}_2$ (x = 0, 4, 8, 12, 16 and 20 mol %)
Figure 3.2 Density and molar volume as a function of ZnF$_2$ content in xZnF$_2$-(20-x)ZnO-40As$_2$O$_3$-40TeO$_2$ glasses
Figure 3.3. Variation of Young’s modulus and Bulk modulus as a function of ZnF$_2$ content in xZnF$_2$-(20-x)ZnO-40As$_2$O$_3$-40TeO$_2$ glasses.
Figure 3.4. Variation of Shear modulus and Poisson’s ratio as a function of ZnF$_2$ content in xZnF$_2$-(20-x)ZnO-40As$_2$O$_3$-40TeO$_2$ glasses.
Figure 3.5. log(K) verses log(V_m) plot of present glass system.
Figure 3.6 Variation of Debye temperatures as a function of ZnF$_2$ content in xZnF$_2$-(20-x)ZnO-40As$_2$O$_3$-40TeO$_2$ glasses.
Figure 3.7. DSC thermograms of the present glass samples.
Figure 3.8. Variation of T_g, T_c and S as a function of ZnF$_2$ content of the present glasses.
Figure 4.1. Optical absorption spectra of $x\text{ZnF}_2-(20-x)\text{ZnO}-40\text{As}_2\text{O}_3-40\text{TeO}_2$ glasses.
Figure 4.2. Variation of cut-off wavelength as a function of ZnF$_2$ content.
Figure 4.3. UV transmittance and reflectance spectra of the present glasses.
Figure 4.4. (a) The relation between $(\alpha_h \nu)^{1/2}$ against photon energy $h\nu$ of the present glasses.
Figure 4.4. (b) The relation between $(\alpha \cdot h\nu)^2$ against photon energy $h\nu$ of the present glasses.
Figure 4.4. (c) The relation between $(\alpha h\nu)^{2/3}$ against photon energy $h\nu$ of the present glasses.
Figure 4.4. (d) The relation between $(\alpha h \nu)^{1/3}$ against photon energy $h \nu$ of the present glasses.
Figure 4.5 (a). Variation of refractive index as a function of wavelength for the present glass system.

Figure 4.5 (b). Variation of extinction coefficient as a function of wavelength for the present glass system.
Figure 4.6 variation of real part of dielectric constant, ε_1, with the photon energy $h\nu$ for the present glass samples.
Figure 4.7. Variation of ε_2 as a function of photon energy in the present glasses.
Figure 4.8. Variation of indirect allowed band gap energy as function of ZnF$_2$ in the present glasses.
Figure 4.9. Variation of the real part of dielectric constant ε_1 with λ^2 in the present glass system.
Figure 4.10. The variation of $1/(n^2-1)$ with $(h\nu)^2$ in the present glasses.
Figure 4.11. Variation of $\ln (\alpha)$ as function of photon energy $h\nu$.
Figure 4.12. Variation of theoretical optical basicity A_{th} as a function of ZnF$_2$ of the present glasses.
Figure 5.1. FTIR absorption spectra of $x\text{ZnF}_2-(20-x)\text{ZnO-40As}_2\text{O}_3-40\text{TeO}_2$ glasses.
Figure 5.2. Deconvoluted IR spectra of $16\text{ZnF}_2 - 4\text{ZnO} - 40\text{As}_2\text{O}_3 - 40\text{TeO}_2$ glass.

Figure shows a graph with absorbance on the y-axis and wavenumber (cm$^{-1}$) on the x-axis. The peaks at 457, 597, 661, 778, and 883 are indicated with arrows.
Figure 5.3. Raman spectra of all the present glasses.
Figure 5.4. Deconvoluted Raman spectra of $20\text{ZnF}_2\text{–}40\text{As}_2\text{O}_3\text{–}40\text{TeO}_2$ glass.
Figure 5.5. Variation of intensity ratio of 746 cm-1 Raman band to 641 cm-1 Raman band as function of ZnF\textsubscript{2} content.

Figure 5.5. Variation of intensity ratio of 746 cm-1 Raman band to 641 cm-1 Raman band as function of ZnF\textsubscript{2} content.
Figure 6.2. RBS spectra of the unimplanted $4\text{ZnF}_2-16\text{ZnO}-40\text{As}_2\text{O}_3-40\text{TeO}_2$ glass.
Figure 6.3. RBS spectra of 150 keV nitrogen implanted 4ZnF$_2$-16ZnO-40As$_2$O$_3$-40TeO$_2$ glass at 5×10^{16} and 5×10^{17} ions/ cm2 doses.
Figure 6.4. RBS spectra of un-implanted 20ZnF$_2$-40As$_2$O$_3$-40TeO$_2$ glass.
Figure 6.5. RBS spectra of 150 keV nitrogen implanted 20ZnF₂-40As₂O₃-40TeO₂ glass at 5×10^{16} and 5×10^{17} ions/cm² doses.
Figure 6.6. Model for blanket implantation.

Gaussian Profile

\[N(x) = N_p \exp\left[-\frac{(x - R_p)^2}{2\Delta R_p^2}\right] \]

- \(R_p \) = Projected Range
- \(\Delta R_p \) = Straggle

Dose

\[Q = \int_{0}^{\infty} N(x)\,dx = \sqrt{2\pi N_p \Delta R_p} \]
Figure 6.7. Penetration depth profiles of the N$^+$ ions in 4ZnF$_2$-16ZnO-40As$_2$O$_3$-40TeO$_2$ glass.
Figure 6.8. The penetration depth profiles of the N^+ ions in $20\text{ZnF}_2-40\text{As}_2\text{O}_3-40\text{TeO}_2$ glass.
Figure 6.9. Scanning electron micrographs of the 150 keV, 5×10^{17} ions/cm2 nitrogen implanted $4\text{ZnF}_2\cdot16\text{ZnO}\cdot40\text{As}_2\text{O}_3\cdot40\text{TeO}_2$ glass.
Figure 6.10. Scanning electron micrographs of 5×10^{17} ions/cm2 nitrogen implanted 20ZnF$_2$-40As$_2$O$_3$-40TeO$_2$ glass sample.
Figure 6.11 Transmission spectra of nitrogen implanted 4ZnF$_2$-16ZnO-40As$_2$O$_3$-40TeO$_2$ glass at 150 keV for 5×10^{16} ions/cm2 and 5×10^{17} ions/cm2 doses.

Figure 6.12. Transmission spectra of nitrogen implanted 20ZnF$_2$-40As$_2$O$_3$-40TeO$_2$ glasses.
Figure 6.13. The variation of optical absorption with wavelength for the nitrogen implanted $4\text{ZnF}_2-16\text{ZnO-40As}_2\text{O}_3-40\text{TeO}_2$ glass.

Figure 6.14. The variation of optical absorption with wavelength for the nitrogen implanted $20\text{ZnF}_2-40\text{As}_2\text{O}_3-40\text{TeO}_2$ glass.
Figure 6.15. The variation of $(\alpha h \nu)^{1/2}$ as a function of $h \nu$ in 4ZnF$_2$-16ZnO-40As$_2$O$_3$-40TeO$_2$ glass for different doses of nitrogen ion.

Figure 6.16. The variation of $(\alpha h \nu)^{1/2}$ as a function of $h \nu$ in 20ZnF$_2$-40As$_2$O$_3$-40TeO$_2$ glass for different doses of nitrogen ion.
Figure 1.1. Variation in volume with temperature for glassy and crystalline solids.
Figure 1.2. Zachariasen’s original A_2X_3 continuous random network structure.
Figure 1.3. Structure of TeO$_2$: (a) α-TeO$_2$, and (b) β-TeO$_2$ (arrows represent the Te 5s electron lone-pair).
Figure 1.4. Structural units in TeO$_2$-ZnO glasses: (a) [TeO$_4$] tbp, (b) [TeO$_{3+1}$] polyhedra, (c) [TeO$_3$] tp, and (d) [TeO$_6$] in a-TeO$_2$
Figure 2.1. X-ray diffractograms of present glass samples.
Figure 2.2. Experimental setup of Thermoinstruments FEI XL30 ESEM.
Figure 2.3. The experimental setup of Mettler-Toledo: Model and DSC 2010-cell cross Sectional view.
Figure 2.4. Simplified layout of the optical alignment of JASCO model V-570 UV-vis-NIR spectrometer and experimental setup.
Figure 2.5. Bruker Optics spectrometer (Tensor 27, Germany) absorption and the optical layout of the IR spectrometer.
Figure 2.6 The experimental setup and optical layout of Renishaw (UK) Raman spectrometer.
Figure. 2.7 The schematic diagram of the accelerator and the associated components.

Figure. 2.8 The photograph of the 150 kV accelerator.
Figure. 2.9 The schematic diagram of the 1.7 MV tandetron accelerator.

Figure. 2.10 The photograph of the 1.7 MV tandetron accelerator.
Figure. 2.11 The photograph of ion beam analysis chamber coupled with 1.7 MV tandetron accelerator.
Photograph of prepared $x\text{ZnF}_2-(20-x)\text{ZnO-40As}_2\text{O}_3-40\text{TeO}_2$ glasses.
4ZnF$_2$-16ZnO-40As$_2$O$_3$-40TeO$_2$ Nitrogen implanted glasses

20ZnF$_2$-40As$_2$O$_3$-40TeO$_2$ Nitrogen implanted glasses

Figure 6.1. Sample holder of 1.7 MeV tandetron accelerator.