LIST OF PLATES

<table>
<thead>
<tr>
<th>No.</th>
<th>TITLE</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Economic losses and extend of damage caused by Bemisia tabaci</td>
<td>9</td>
</tr>
</tbody>
</table>

CHAPTER I

1. Economic losses and extend of damage caused by *Bemisia tabaci*

CHAPTER III

2. Biology of *Bemisia tabaci*.
3. ICMV Transmission studies and its confirmation by TAS-ELISA and Dot-blot
4. Particle trapped by antiserum to Indian cassava mosaic virus in negative staining and Immunosorbent electron microscopy (ISEM)
5. Internal morphology of *Bemisia tabaci* in relation to geminivirus transmission
6. ICMV transmission is circulative

CHAPTER IV

7. Important Natural enemies observed and recorded during life-table studies
8. BEMSIM, a simulation model (7.0 mb) on the population dynamics of *Bemisia tabaci*

vii
CHAPTER VI

9. *Bemisia tabaci* and its parasitoids – maintenance and field cage evaluation 224b
10. Measurement of female *Encarsia* for morphometrics analysis 228
11. *E. transvена (=E. sophia)* identification based on morphology 233
12. *E. bimaculata* identification based on morphology 236
13. *E. strenua* identification based on morphology 239
14. *E. nigricephala* identification based on morphology 241
15. *E. pergandiella* identification based on morphology 244
16. *E. azimi* identification based on morphology 247
17. *E. guadeloupae* identification based on morphology 249
18. *E. meritoria* identification based on morphology 251
19. *Eretmocerus mundus* identification based on morphology 254
20. *Eretmocerus* sp. identification based on morphology 256
21. Different *B. tabaci* stages selected for host suitability studies for female parasitoid development and oviposition 375
22. Different stages selected for *E. transvена* Hyperparasitism studies 376
23. Development of female *Encarsia transvена* 377, 379
24. Development of male *Encarsia transvена* 378-379
25. Development of male *E. transvена* on different stages of Female *E. transvена* (conspecific) and *E. mundus* (heterospecific) 380
26. Development of female and male *Encarsia bimaculata* 401 - 403
27. Development of *Eretmocerus mundus* on *Bemisia tabaci* 415 - 417
LIST OF TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>TITLE</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Developmental period of Bemisia tabaci on three host plants</td>
<td>40</td>
</tr>
<tr>
<td>2.</td>
<td>Fecundity, Longevity and sex-ratio of B. tabaci on three species of host plants</td>
<td>40</td>
</tr>
<tr>
<td>3.</td>
<td>Biometrics of different stages of B. tabaci on cassava, eggplant and tobacco</td>
<td>41</td>
</tr>
<tr>
<td>4.</td>
<td>Sexual dimorphism in Bemisia tabaci pupae</td>
<td>41</td>
</tr>
<tr>
<td>5a.</td>
<td>Activity of cyanide metabolizing enzymes in the cassava reared and sweet potato reared whitefly (2 mg) samples</td>
<td>68</td>
</tr>
<tr>
<td>5b.</td>
<td>Effect of different hours of acquisition access and virus inoculation access periods on Indian Cassava Mosaic Virus transmission by cassava biotype</td>
<td>68</td>
</tr>
<tr>
<td>6.</td>
<td>Influence of number of CWF under different AAFP and IAFP on ICMV transmission</td>
<td>69</td>
</tr>
<tr>
<td>7.</td>
<td>Primers used for polymerase chain reaction to amplify the begomoviral coat protein gene and those used for nucleotide sequencing of amplicons, respectively</td>
<td>108</td>
</tr>
<tr>
<td>8.</td>
<td>Percentage nucleotide identity and amino acid similarity (parenthetically) for cassava-infecting begomoviruses for which sequences were determined herein and/or are available in the GenBank database</td>
<td>109</td>
</tr>
</tbody>
</table>
CHAPTER IV

9. Life table studies of *Bemisia tabaci* Genn. on cassava [first observational period (18 January - 20 February, 2000)] 146

10. Life table studies of *Bemisia tabaci* Genn. on cassava [the second observational period (2 February - 22 February 2000)] 147

11. Life table studies of *Bemisia tabaci* Genn. on cassava [the third observational period (9 - 31 March)] 148

12. Life table studies of *Bemisia tabaci* Genn. on cassava [fourth observational period (4th April - 26 May)] 149

13. Spatial distribution of *B. tabaci* within cassava during 1998-1999 164

15. Spatial distribution of *B. tabaci* within cassava during 1999-2000 167

17. Spatial distribution of *B. tabaci* / 10 plants during 2000-2001 170

19. Spatial distribution of *B. tabaci* / 10 plants during 2001-2002 172

21. Correlation analysis of total whitefly population with parasitoid and weather factors 174

22. Combined correlation analysis of total whitefly population with parasitoid and weather factors 174

23. Percentage of mortalities of *B. tabaci* eggs and nymphs on cotton (after Wagner, 1993) 191

24. Sample result of predicted population of whiteflies and influence of biotic and abiotic factors on population build up 192

25. Comparison of Observed and simulated values during 01/27/01 - 06/05/01 193

26. Comparison of Observed and simulated values during 07/05/01 - 12/29/01 194

27. Comparison of Observed and simulated values during 01/30/02 -
28. Comparison of developmental duration of actual (published) and predicted

29. Percentage of mortalities of B. tabaci eggs, nymphs and pupae in different experiment at cumulative temperature of 27.5°C

CHAPTER V

30. Nymphal, pupal and adult population of B. tabaci infested (T1-T4) and non-infested (C1-C2) cassava seedlings (CSRP)

31. Nymphal, pupal and adult population of B. tabaci infested (T1-T4) and non-infested (C1-C2) cassava leaves with CMD infection

32. Total protein measurements and enzyme activity in cassava seedlings raised (non-diseased) plants from Bemisia tabaci infested and non-infested plants

33. Total protein measurements and enzyme activity in CMD infected (diseased) cassava from Bemisia tabaci infested and non-infested plants

CHAPTER VI

34. List of aphelinid parasitoids with regions and host crops of Bemisia tabaci surveyed during 1998-2003 from different parts of India

35. Population of B. tabaci and its parasitoids surveyed with temperature and RH on different host plants

36. Morphometrics of different species of aphelinid collected during 1998-2003

37. Percentage of nucleotide sequence identities of D2 region of 28S rRNA of different strains of Encarsia sophia with Encarsiella and E. strenua

38. Percentage of nucleotide sequence identities of D2 region of 28S rRNA of different strains of Encarsia bimaculata with Encarsiella and E. sophia
39. Percentage of nucleotide sequence identities of D2 region of 28S rRNA of different aphelinids

40. Developmental time (days) of Encarsia transvena on different stages of Bemisia tabaci

41. Developmental period and percentage of parasitisation of male E. transvena on different stages of female E. transvena and Er. mundus

42. Field cage evaluation of parasitisation of Encarsia transvena on B. tabaci infested cassava

43. Percentage parasitism of E. bimaculata under green house condition
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>TITLE</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Absorbance values (A_{405}) for ICMV using ICMV MAbs</td>
<td>70</td>
</tr>
<tr>
<td>2.</td>
<td>Absorbance values (A_{405}) for ICMV on cassava using ICMV MAbs under different AAFP and IAFP</td>
<td>70</td>
</tr>
<tr>
<td>3.</td>
<td>Absorbance values (A_{403}) ICMV in B. tabaci (25 CWF) using ICMV MAbs at 24h and 48h</td>
<td>70</td>
</tr>
<tr>
<td>4.</td>
<td>Agarose gel electropherogram of ICMV products obtained by amplification of nucleic acids extracted from ICMV infected and healthy cassava seedlings</td>
<td>71-72</td>
</tr>
<tr>
<td>5.</td>
<td>Polymerase Chain Reaction (PCR) amplification of Indian Cassava Mosaic Virus (ICMV) DNA from viruliferous whitefly vector Bemisia tabaci in different AAFP on ICMD infected cassava plants</td>
<td>71-72</td>
</tr>
<tr>
<td>6.</td>
<td>Polymerase Chain Reaction (PCR) amplification of Indian Cassava Mosaic Virus (ICMV) DNA from viruliferous whitefly vector Bemisia tabaci in different AAFP on ICMD infected cassava plants</td>
<td>71-72</td>
</tr>
<tr>
<td>7.</td>
<td>Polymerase Chain Reaction (PCR) amplification of Indian Cassava Mosaic Virus (ICMV) DNA from viruliferous whitefly vector Bemisia tabaci in different AAFP on ICMD infected cassava plants</td>
<td>71-72</td>
</tr>
<tr>
<td>8.</td>
<td>DNA sequence data of 530 bp fragment amplified using Primer A and B</td>
<td>73</td>
</tr>
<tr>
<td>9.</td>
<td>Absorbance values (A_{405} nm) for ICMV using ICMV Mabs</td>
<td>85</td>
</tr>
<tr>
<td>10.</td>
<td>SDS-PAGE Electropherogram (10%) of purified ICMV from cassava showing single band at 38 kDA</td>
<td>85</td>
</tr>
<tr>
<td>11.</td>
<td>Primer derived 1080 bp of nucleotide sequence of Indian Cassava Mosaic Virus (ICMV) strain Maharashtra (NCBI acc. no. AJ314739)</td>
<td>110-111</td>
</tr>
</tbody>
</table>
12. Primer derived nucleotide sequence of AV1 gene of coat protein of Indian Cassava Mosaic Virus (ICMV) strain Trivandrum (NCBI acc. no. AF423180)

13. PCR amplification of DNA from ICMV-coat protein gene fragment from different released cassava varieties using S1 & A1 primer

14. PCR amplification of DNA from ICMV-coat protein gene fragment from different released cassava varieties using S2 & A2 primer.

15. PCR amplification of DNA from ICMV-coat protein gene fragment from viruliferous whitefly vector *Bemisia tabaci* in different AAFP on ICMD infected cassava plants, using S1 & A1 primer

16. PCR amplification of DNA from ICMV-coat protein gene fragment from viruliferous whitefly vector *Bemisia tabaci* in different AAFP on ICMD infected cassava plants, using S2 & A2 primer.

17. Genome organization of Indian cassava mosaic virus

18. Phylogenetic tree showing relationships between cassava-infecting begomoviruses based on nucleotide sequence for the coat protein gene

19. Single most parsimonious tree reconstructed by PAUP of the CP for comparison of ICMV (Tri II) with other ICMV, ACMV, SLCMV, SACMV and EACMV

20. Phylogenetic tree showing the relationships between cassava-infecting begomoviruses based on the deduced amino acid sequence for the coat protein

21. Single most parsimonious tree reconstructed by PAUP of the Cp for comparison of ICMV (Tri II) with other ICMV, ACMV, SLCMV, SACMV and EACMV

22. Comparison of the CP nucleotide sequences of ICMV-Tri II with ICMV-Adivaram, ICMV-Maha, ICMV-Tri and SLCMV.

23. Amino acid alignment in the region of the coat protein of ICMV-tri II with ICMV-Adivaram, ICMV-Maha, ICMV-Tri and SLAMV

24. PCR amplification of DNA from ICMV-coat protein gene fragment
from viruliferous whitefly vector *Bemisia tabaci* stylet, salivary gland and digestive tract

25. a) Nucleotide sequence of AV1 gene of coat protein of Indian Cassava Mosaic Virus (ICMV) amplified from *B. tabaci* salivary gland, stylet and digestive tract

25. b) Phylogenetic dendrogram derived from an alignment of ICMV-330 bp nt sequence; amplified from 390 bp PCR product using CTCRI-USIF nested primer S1 and A1

CHAPTER IV

29. Spatial distribution of *Bemisia tabaci* during 1999 – 2000

30. Stage wise population dynamics of *Bemisia tabaci* on cassava during 1999 – 2000

32. Spatial distribution of *Bemisia tabaci* during 2000- 2001

33. Stage wise population dynamics of *Bemisia tabaci* on cassava during 2000-2001

34. Population dynamics of *Bemisia tabaci* and its natural enemies during 2000-2001

35. Spatial distribution of *Bemisia tabaci* during 2001- 2002

36. Stage wise population dynamics of *Bemisia tabaci* on cassava during 2001-2002

37. Population dynamics of *Bemisia tabaci* and its natural enemies during 2001-2002

38. Outline of the simulation model and effect of different biotic and abiotic factors on population build up
39. Comparison of observed and simulated dynamics of *B. tabaci* and its natural enemies (01/27/01 to 06/05/01) 197
40. Comparison of observed and simulated dynamics of *B. tabaci* and its natural enemies (07/05/01 to 12/29/01) 197
41. Comparison of observed and simulated dynamics of *B. tabaci* and its natural enemies (01/30/02 to 06/14/02) 197
42. Decline of Egg population due to different mortality factors 198
43. Decline of nymphal population due to different mortality factors 198
44. Decline of pupal population due to different mortality factors 198

CHAPTER V

45. SDS-PAGE Electropherogram of cassava seedlings raised (non-diseased) plants from *Bemisia tabaci* infested (T1-T4) and non-infested plants (C1-C2) 212
46. SDS-PAGE Electropherogram of CMD infected (diseased) plants from *Bemisia tabaci* infested (T1-T4) and non-infested plants (C1-C2) 212
47. PAGE Electropherogram of peroxidase profile of cassava seedlings raised (non-diseased) plants from *Bemisia tabaci* infested (T1-T4) and non-infested plants (C1-C2) 212
48. PAGE Electropherogram of Peroxidase profile of CMD infected (diseased) plants from *Bemisia tabaci* infested (T1-T4) and non-infested plants (C1-C2) 212

CHAPTER VI

49a. PCR amplification D2 region of 28S rRNS of aphelinids 266
49b. Aphelinid parasitoids 266
50. *Encarsia sophia* (= *E. transvena*) strain Trivandrum D2 region of 28S ribosomal RNA gene, partial sequence (517 bp) 267
51. *Encarsia sophia* (= *E. transvena*) strain Maharashtra D2 region of 28S ribosomal RNA gene, partial sequence (710 bp)

52. *Encarsia sophia* (= *E. transvena*) strain Coimbatore D2 region of 28S ribosomal RNA gene, partial sequence (321 bp)

53. *Encarsia bimaculata* strain Trivandrum D2 region of 28S ribosomal RNA gene, partial sequence (674 bp)

54. *Encarsia bimaculata* strain Bangalore D2 region of 28S ribosomal RNA gene, partial sequence (681 bp)

55. *Encarsia haitiensis* strain Trivandrum D2 region of 28S ribosomal RNA gene, partial sequence (712 bp)

56. *Encarsia guadeloupae* strain Bangalore D2 region of 28S ribosomal RNA gene, partial sequence (709 bp)

57. *Encarsia strenua* strain Trivandrum D2 region of 28S ribosomal RNA gene, partial sequence (530 bp)

59. *Encarsia pergandiella* strain Trivandrum D2 region of 28S ribosomal RNA gene, partial sequence (433 bp)

60. *Encarsia azimi* strain Bangalore D2 region of 28S ribosomal RNA gene, partial sequence (486 bp)

61. *Eretmocerus mundus* strain Bangalore D2 region of 28S ribosomal RNA gene, partial sequence (378 bp)

62. Rooted phylogram showing nucleotide sequence similarity based on Clustal W Multiple Alignment of *E. haitiensis* with related species

63. Rooted phylogram showing nucleotide sequence similarity based on Clustal W Multiple Alignment of *E. guadeloupae* with related species

64. Rooted phylogram showing nucleotide sequence similarity based on Clustal W Multiple Alignment of *E. nigricephala* with related species

65. Rooted phylogram showing nucleotide sequence similarity based on Clustal W Multiple Alignment of *E. pergandiella* with related species

66. Rooted phylogram showing nucleotide sequence similarity based on Clustal W Multiple Alignment of *E. azimi* with related species
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Rooted phylogram showing nucleotide sequence similarity based on Clustal W Multiple Alignment of E. sophia with related species</td>
</tr>
<tr>
<td>68</td>
<td>Rooted phylogram showing nucleotide sequence similarity based on Clustal W Multiple Alignment of E. bimaculata with related species</td>
</tr>
<tr>
<td>69</td>
<td>Rooted phylogram showing nucleotide sequence similarity based on Clustal W Multiple Alignment of different aphelinids</td>
</tr>
<tr>
<td>70</td>
<td>Preference of Encarsia transvena among different stages of B. tabaci</td>
</tr>
<tr>
<td>71</td>
<td>Percentage of parasitisation on different stages of female E. transvena and Er. mundus</td>
</tr>
<tr>
<td>72</td>
<td>Schematic representation of mass rearing and commercial production of Encarsia transvena</td>
</tr>
<tr>
<td>73</td>
<td>Esterase banding pattern of unparasitised and E. bimaculata parasitised B. tabaci nymphs</td>
</tr>
<tr>
<td>74</td>
<td>Malate dehydrogenase banding pattern of unparasitised and E. bimaculata parasitised B. tabaci nymphs</td>
</tr>
<tr>
<td>75</td>
<td>Xanthine dehydrogenase banding pattern of unparasitised and E. bimaculata parasitised B. tabaci nymphs</td>
</tr>
<tr>
<td>76a&b</td>
<td>Esterase banding pattern of adults and nymphs of different Aphelinid parasitoids</td>
</tr>
<tr>
<td>76c</td>
<td>Cluster analysis (UPGMA) based on esterase banding pattern</td>
</tr>
</tbody>
</table>