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2.1 Inferodmctions

There has been a considerable interest in 
recent times to obtain solutions of the Einstein field 
equations in higher dimensions. It is supposed that 
underlying spacetime in the large energy limit of the 
Planck energy may be of higher dimensions than the; usual

■ i
four-dimensions. At this level, all the basic_forces of 
nature are assumed to unify and hence it would be

"i

necessary in this context to obtain solutions of the 
gravitational field equations in higher dimensions. In 
fact such consideration would be relevant when the usual 
four dimensional manifold picture of spacetime b.ecomes 
in applicable. Perhaps this would happen as we approach 
singularity whether in gravitational collapse or in 
cosmology. Several authors have considered the Kasner
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vaccum solution in five dimensional Kaluza-Klein theory 

and the problem of dimensional reduction also, w There 

also have ' been investigations of entropy; and 

classification of homogeneous cosmologies in Kaluza- 

Klein theory. For field of localised sources, higher 

dimensional versions of Schwarzschild, Reissner- 

Nordstrom, Vaidya and Bonnor-Vaidya solutions have been 

investigated by several authors.

Ever since mid sixties i.e. 1960, gravitational

collapse continues to occupy centre stage in

gravitational research. The problem is what initial

conditions give to formation of black hole or naked
e    — ............ .—-—————™

singularity. There have been some very interesting 

investigations in this direction. Vaidya solution was

used in studying gravitational collapse and it has been
t

pointed out that it may lead to formation of ! naked
^ *

singularity. Several workers have done an extensive 

analysis of gravitational collapse using the Vaidya 

metric in the context of naked singularity. It 'is an 

important problem, whether collapse always leads to 

singularity hidden behind a black hole even horizon or 

it is naked. Husain (1996) has presented collapse of a 

Type II null fluid with an equation of state, sane 

nonstatic spherically symmetric exact solutions of the 

Einstein equation. It turns out that the metrics
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\ representing null fluid collapse have multiple apparent 
horizons and in the large limit asymptotically flat 
metrics have short hair and may be thought of lying 
between Schwarzschild, and the Reissner-Nordstrom 
metrics. s

In this chapter we have investigated the
generalized Vaidya family in higher dimensions

\

presenting a large family of inhomogeneous nonstatic 
spherically symmetric solutions of the Einstein equation 
for null fluid. It covers higher dimensional versions of 
many previously known solutions such as Vaidya/ charged
Vaidya, and Husain solutions and also sane new solutions 
representing global monopole or string dust.

2.2 The Metric and Generalised Vaidya family;
, j

Let us consider (n+2) - dimensional
spherical .spacetime represented by the metric '■!
. . . . . . . . i.

\\

^ ,2 „ , . l/l-m(u,rK,2 2.2(2.1) ds =2 dudr + (----- -—*-)du - r dw*
(„-■Ur11’1 h

where

(2.2) dw2 = d0.2 + sin2©. d&^ + ..
** -i ill bi-t iir 11 i.i dI iC

sin2 9 . d&2 ,n-1 n
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and m be an arbitrary function of retarded time' u and

radial coordinate r, i.e.

(2.3) m = m (u,r)

When

(2.4) m = m (u)

one obtains Vaidya solution in higher dimension.
j

The usual Vaidya solution follows for n = 2 i.e. in four 

dimensional spacetime. Let us now define the 

coordinates:

(2.5) x° = u

(2.6) 1x r /

(2.7) i+1x 9 .1

(2.8) i = • 1, 2 n
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One may obtain the Einstein tensor in a standard 
way and which reads

(2.9) G, n roJ nm1 1 -
2m

(n-1)r“ (n-l)r1 (n-l)rn“XJ

(2.10) nm'
’01 (n-1 )r n

(2.11) m
’12 (n-1)rn-3

(2.12) r2 _ r3 _ g2 - g3 - ,n+l
3n+l

where an overhead dot stands derivative with
respect to u and dash for the derivative with respect to
r.

Let us consider the energy momentum tensor of a 
Type II fluid as

(2.15) Tlk = f M f+p) (L, ^ + lk ^



36

where

(2.14) rf = 0 ,

(2.15) l± = 1

the null vector 1^, be a double null eigenvector 

of T^. The Vaidya spacetime of radiating star reads for

(2.16) J3 = f> = 0.

For ,

(2.17) p = 0

Tik re<^uces to degenerate Type I fluid and it 
describes string dust i.e.

(2.18) r = P =0 ■

Hence, we get
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<2-19> Tik = f«-i Tk + h. 7i>

For such a distribution, the energy condition

reads

(a) The Strong and weak energy conditions

(2.20) P >. 0

(2.21) > 0

(2.22) P > 0

(b) The dominant energy conditions

(2.23) j* >. P > 0

(2.24) P > 0

(c) The weak energy condition

(2.25) p = 0

f .+ p > 0 ,(2.26)
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(2.27) ^> > 0 .

(d) The strong energy condition

(2.28) p = 0 ,

(2.29) f + P > 0

(2.30) p >_ 0

(e) The dominant energy condition

(2.31) f > 0

(2.32) -f < p < f

It is to be noted that

(2.3 3) Tik (Lk = 0

and

(2.34) T.k r^1 rvk = .
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For the metric (2.1), one may put

(2.35) r

(2.36) li = gi + 2 1 2m
, n % n-1 (n-l)r

\
\

Let us now solve the Einstein equation

(2.37) Gik = - 87T Tik

In view of eqs. (2.31) - (2.33) i.e. these

equatiions satisfy the conditions given by eq. (2.13). 

Now let us substitute eqs. (2.9) to (2.12) in equations 

(2.35) - (2.36), one obtains

m"
, .. n-1(n-1)r

nm1
.(n-1) rn 

ram
(n-1) r11

(2.38) 8IT p

(2.39) 8 Tlf =

8 TT r(2.40)
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Let us now examine the equation (2.13) i.e. Type

II- fluid. The part ju (L^ of T^ be the component of

matter field which moves along the null hypersurface

u = constant. For ? = p = 0, one obtains the Vaidya
J ! 

solution in higher dimensions. Hence, the distributioin
I

describes Vaidya radiating star in Type II fluid in 

higher dimensions. Here, it is to be noted that for 

p = 0, we do not recover the energy momentum tensor for 

the perfect fluid distribution. Rather, it describes an 

imperfect fluid distribution. Hence, by proper choice of 

the mass functiion, the energy conditions may be 

satisfied. Without loss of generality one may put the 

mass functioin m (u,r) as

*■ »o
(2.41) m (u,r) = ^ aj_ (u) ri / ;

-foo

where a^ (u) are arbitrary functions of the retarted 

time u. Hence, we obtain

(2.42) 8 -jr p
— c-0

(n-l)^L
-4.

i (i-1) a^ r i-n-1

8ml3 n
(n-1)

4^0

a.1 r ,(2.43) i-n-1
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(2.44) 8 TT p = -jjzf-Z a. (u) ri_n .
4.0^

For four-dimensional spacetime for n = 2 the

above solutions go overto Wang family. Hence'/ our 

solutions are the higher dimensional generalisation. 

Again for j3 = p = p = 0/ one obtains Schwarzs child 

solution in higher dimensions.
i

Now/ in view of eqs (2.38) - (2.40)/ we observe

that

(2.45) j3 = 0

imp 1 ie s

(2.46) m' = 0

or

(2.47) m" = 0

which implies

(2.48) p = 0
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Hence, Vaidya solution simply follows from^>= 0

Again

(2.49) ju — 0

implies

\

(2.50) m = 0

2.3 Some Particular Solutions:

Let us now consider sane particular cases 

case (i) Let us consider the function a^(u) as

a/2 i = 1

(2.51) a.(u) /

i ¥ 1

where a be an arbitrary constant. Hence

(2.52) m(u,r) = ^ r.

In view of eqs. (2.42) - (2.44) , one obtains
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(2.53) p = 0

(2.54)

(2.55)

showing that the matter field is of Type I and 
the metric reads

llTf = na
2(n-1)r n

(2.56) dsi 2 = 2 dudr + (1----du2 ,

which may be identified as higher dimensional 
representation of field of a Schwarzschild particle with

• i

global monopole or particle in string dust. Again for 
n = 2, we recover the monopole solution.

Case (ii)
Let us consider the function a^ (u) such that

i = (n-1)

/

i (n-1)
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where be a constant. For this case, one obtains o

(2.58) 8"TT p = - a^ (n-2)/r ,

(2.59) 8-rj> = naQ/r'

(2.60)

Again it gives Type I distribution and the metric
re ads

(2". 61) ds2 = 2 dudr + (l-2a0/n-l) du2

which also describes the global monopole spacetime for 
n = 2.

Case (iii) Let us define a^ (u) as

A(n-l)
n(n-+l) i = n+1

(2.62) a._

L 0 i ^ n+1
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(2.63)

(2.64)

(2.65)

metric

(2.66)

highe r

For this case, we obtain

m(u,r) Afri-l) n+1 
n(n+1)

Others parameters read

8 T P = “ 8 H" j= =/\

/

where /\ as the cosmological constant and the 

reads

ds2 = 2 du dr + (1- r ) du2 .
2 (n+1)

This describes de Sitter and anti de Sitter
r.„.------- ------------------—

dimensional spacetime for

A g $(2.67)



For n = 2, it reduces to de Sitter spacetime.

Case (iv) Let us select a^ (u) as

(2.68) a^ (u)

f (u) f or i = 0

for i = IL-n

0 for i ^ 0, d-n ,

where two arbitrary function f(u) and e(u) 

describe mass and electric charge at the retarded time 

u. The corresponding physical parameters read

(2.69) m = f(u)
4TTe2
n r n-

(u)
2 /

(2.70) 8"fT £ = 871 p 47T e (u)
2 ' nr

(2.71) 8t p = " —-— n (n* - SXs-i ,(n-1)rn V rb-l /

and the metric in this case reads
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(2.7 2) ds = 2 dudr + [ 1- 2f (u)
(n-l)rn-1

8~TT e-1 
n(n-l)r2(n-1)

]dui 2,

which is identified as the Bonnor-Vaidya solution in 

higher dimensions. The electromagnetic field is

(2.73) ik
e(u)
nr

t

with the four-current vector

(2.74) 4 IT J = - eiul i
rn 1

Case (v) Let us select the a^(u) such that

f (u) i = 0

(2.75) ai (u) q(u)
nk-1 i=l-nk (k f L/n)

i ^ 0, 1-nk ,

where f(u) and g(u-) are arbitrary constants an k

be the positive constant and
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(2.76) k < 1

In this case the physical parameters read

(2.77) m(u,r) = f(u) q(u)
,, . \ kn-1(kn-1) r

t

(2.78) p = k

(2.79) 8Tf =

For k = 1, the above solution describes Bonnor- 

Vaidya solutioin and the metric read as

(2.80) ds^ = 2dudr + 1- 2f_(ul +2g(u) (n-1) 
(n-l)r11 1

(kn-1.) r (n&h)-2
du2

This is identified as Husain (1996) solution and

is asymptotically flat for
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(2.81) k < 1/n

representing bounded source and for

(2.82) k > 1/n

be the cosmological. 

But for

(2.83) kn = 1

(2.84) m(u,r) = f(u) + a(u) In r

energy conditions are violated and so it is ruled out.

Hence let us discuss two sub-cases, one for 
bounded source and other for cosmological model.

Sub-Case (a) Let us consider the sub-case (a) as •

(2.85) k > 1/n

For simplicity let us put k = 1. Then, one may
obtain
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(2.86) 2 f = A(l- tan hu)

(2.87) 2^ = 1+ B tan hu ,

where A and B are constants such that

(2.88) A > 0

(2.89) 0 < B < 1

Under above situation the metric reads

(2.90) ds2 2 du dr + I -A(l-tan hu)
/ t \ n-1(n-1) r

1+B tan hu du

It has a naked singularity at r = 0 in the limit 
u —> ©o . But for u —■> -CO , it may have horizons 
depending upon the relative values of A and B, and
horizons are



(2.91) (n-l) r11"1 = A + s/ A2+B-l

Sub-Case (b) Let us consider sub-case (b) as

(2.92) k < 1/n

One obtains

(2.93) 2f = C + A (1- tan hu)

(2.9 4) 2g = B (1- tan hu)

and the metric reads

(2.95) ds2 = 2du dr + A(l-tan hu)
/ t\ n-l (n-l) r

B(1-tan hu )_____
(n-l) (kn-1) rn(k+1)“2 _

du 2

where

(2.96) A, B > 0.



52

Again in the limit u —> c>0 , the metric will

represent either naked singularity at r = 0 for

(2.97) C / 0

or it would be flat for

(2.98) C = 0

For u —> - OO with C = 0, apparent horizons are

(2.99) n-(.H±.y 7.1
Rn_1

2A _nk-l . 
n-1 n-1

2B

(n-1)(nk-1)
0,

(2.100) R n-1

But for

(2.101) n = 2 and k = 1/3

one obtains

(2.102) (r-2A)3 = (3B)3 r
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2.4 Concluding Remarks:

We have obtained a large family of. 
inhomogeneous non-static spherically symmetric solutions 
of the Einstein equation for null fluid in higher 
dimensions. It encompasses higher dimensional versions 
of many previously known solutions, such as, Vaidya* 
charged Vaidya and Husain solutions and also some new 
solutions describing global monopole or string dust. In 
this way we have presented the general version of the 
4-dimensional spherically symmetric solutions describing 
Type II fluid to (n+2)-dimensional spherically symmetric 
solutions and essentially retaining their physical 
behaviour. In particular higher dimensional version of 
Husain solution that describes gravitational collapse 
leading to asymptotically flat black hole solutions for 
k > 1/n. The general metric depends upon the parameter k 
and two arbitrary functions of retarded coordinate u, 
which are constrained by the energy conditioins. Also 
the long retarded time limit of the asymptotically flat 
solutiions would fall between Schwarzschi Id and
Reissner-Nordstrom solutions. However, it is possible to 
obtain more exact solutions of the similar kinds by 
imposing the equation of state p = k ^ , The linear
combinations of all the cases presented above would also 
be a solution.


