Contents

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>i</td>
</tr>
<tr>
<td>Abbreviated terms</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>Preface</td>
<td>xii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xix</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction to High Temperature Superconductors Materials

1.1 Introduction to superconductivity 1

1.2 Properties of superconductor 3

1.2.1 Type-I superconductors 10

1.2.2 Type-II superconductors 11

1.2.3 High Temperature Superconductors 14

1.2.4 Intermediate Temperature Superconductors 15

1.3 Fundamental Properties of YBCO and BSCCO 16

1.3.1 Fundamental Properties of YBCO 16

1.3.2 YBCO Structure 17

1.3.3 Fundamental Properties of BSCCO 18

1.3.4 BSCCO Structure 19

1.4 Coated Conductors and Thin Films 20

1.4.1 First and Second Generation Tapes 21

1.4.2 Substrates 22

1.4.2.1 IBAD technique 22

1.4.2.2 RABiTS technique 24

1.4.3 Methods of YBCO Film Growth 27

1.4.3.1 PLD process 27

1.4.3.2 BaF$_2$ Ex-situ Process 30

1.4.3.3 TFA-MOD Process 31

1.4.4 Methods of BSCCO Film Growth 33

1.4.4.1 PIT Process 33

Bibliography 35
Contents

Chapter 2: Theoretical studies on High Temperature Superconductors
2.1 Heat conduction characteristics and thermal stabilization in YBCO tape
2.2 Theoretical prediction of heat flow in a conduction-cooled YBCO wire
2.3 Temperature instability in high-\(T_c\) superconducting wire exposed to thermal disturbance
2.4 Temperature profile evolution in quenching high-\(T_c\) Superconducting Composite Tape
Bibliography

Chapter 3: Experimental Studies on High Temperature Superconductors & its applications
3.1 I-V characteristic of \(T_c\) samples
3.1.1 Experimental Set-up
3.1.2 Sensors, Instrumentation & Data logging
3.2 Critical Current Characteristics of 2G YBCO Tape under Twisting Moment
3.2.1 Sample preparations
3.2.2 Experimental Set-up
3.2.3 Sensors, Instrumentation & Data logging
3.2.4 Strain Characterization
3.2.5 FEA modeling
3.3 Characterization of laboratory scale High-\(T_c\) D-shaped magnet
3.3.1 D-shaped magnet design parameters
3.3.2 Magnet Fabrication
3.3.3 Experimental Set-up
3.3.4 Sensors, Instrumentation & Data logging
3.3.5 Quench Study of D-shaped magnet
Bibliography

Chapter 4: Results and Discussion
4.1 I-V characteristic of \(T_c\) samples
4.2 Critical Current Characteristics of 2G YBCO Tape under Twisting Moment
4.3 Characterization of laboratory scale High-\(T_c\) D-shaped magnet

Chapter 5: Conclusion & Future works
List of Publications

- ii -
Abbreviated Terms

Nomenclature

B Magnetic field
$
ho$ Normal-state resistivity
T_c Superconducting critical temperature
Ω Resistance
T Temperature / Tesla
j_s Supercurrent density
e Charge of electron/proton
m Mass of electron
c velocity of the light
E Electric field
n Density of the free electron
n_s Density of the superconducting electron
n_n Density of the normal electron
j Current density
λ Superconducting penetration depth
λ_L London penetration depth
v_s Superfluid velocity
A Magnetic vector potential
ξ Ginzburg-Landau Coherence (GL) length
κ Ginzburg-Landau parameter
H_c Critical magnetic field
M Isotope mass
k_B Boltzmann constant
Θ_D Debye temperature
ω_D Debye temperature
I_c Critical current
B_c Critical magnetic field
ϕ_0 Magnetic flux quantum
J_c Critical current density
H_{br} Irreversibility magnetic field
Abbreviated Terms

\(\delta \)
c-axis grain fraction
\(a, b, c \)
Unit cell parameter
\(B_{c1} \)
Lower critical magnetic field
\(B_{c2} \)
Upper critical magnetic field
\(B_{nir} \)
Irreversibility magnetic field
\(H_{ext} \)
External magnetic field
\(\rho \)
Mass density
\(C_p \)
Specific heat
\(K \)
Thermal conductivity
\(L \)
Length
\(x, y, z \)
Cartesian coordinates
\(t \)
time
\(h \)
Heat transfer coefficient
\(J_0 \)
Bessel function of first kind of zero order
\(J_1 \)
Bessel function of first kind of first order
\(I \)
Transport current
\(L \)
Inductance
\(E \)
Young’s modulus
\(v \)
Poisson’s ratio
\(M_t \)
Twisting moment
\(\tau_{\text{max}} \)
Maximum shear stress
\(G \)
Modulus of rigidity
\(\epsilon_t \)
Maximum torsional shear stain
\(V \)
Transport voltage
\(V_c \)
Critical voltage
\(V_h \)
Hall voltage
\(\theta \)
Twist angle
\(\theta_{\text{mean}} \)
Twist angle corresponding to the average current value of \(I_{c, \text{max}} \) and \(I_{c, \text{min}} \)
\(I_{c, \text{max}} \)
Critical current of untwisted tape
\(I_{c, \text{min}} \)
Critical current at the maximum twist angle
\(\delta \theta \)
Twist interval
\(I_{c0} \)
Critical current of untwisted tape
Abbreviated Terms

γ
Magnetic sensitivity

B
Magnetic field flux density

R
Heater resistance

V_{min}
Minimum heat pulse voltage

t_p
Heat pulse duration

N
Number of turns

A
Cross-sectional area

Δt
time difference

Acronyms and Initials

1D
One dimensional

3D
Three dimensional

AMSC
American Superconductor Corporation

2G/3G
Second/Third generation

Ag
Silver

Ba-La-Cu-O
$\text{Ba}_{2}\text{La}_{5.4}\text{Cu}_{5}\text{O}_{5(3-\rho)}$

BSCCO
Bismuth strontium calcium copper oxide ($\text{Bi}_2\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_{10}$)

BZO
BaZrO_3

CC
Coated conductor

CCICC
Coated conductor in conduit cable

CeO$_2$
Cerium oxide

CuO$_2$
Copper oxide

DAC
Data acquisition and control

FEA
Finite element analysis

GPa
Giga Pascal

GZO
Gadolinium zirconiate

Hg
Mercury

HBCCO
Hg-based cuprates $\text{HgBa}_2\text{Ca}_2\text{Cu}_3\text{O}_{8+\delta}$

HTS
High temperature superconductors

IBAD
Ion-Beam-Assisted-Deposition

IQZ
Initial quench zone
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaO$_{1.8}$Fe$_2$As</td>
<td>Iron oxypnictide</td>
</tr>
<tr>
<td>LHe</td>
<td>Liquid helium</td>
</tr>
<tr>
<td>LN$_2$</td>
<td>Liquid nitrogen</td>
</tr>
<tr>
<td>LTS</td>
<td>Low temperature superconductors</td>
</tr>
<tr>
<td>MgB$_2$</td>
<td>Magnesium diboride</td>
</tr>
<tr>
<td>MgO</td>
<td>Magnesium oxide</td>
</tr>
<tr>
<td>MOD</td>
<td>Metal organic decomposition</td>
</tr>
<tr>
<td>MQE</td>
<td>Minimum quench energy</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>Nb</td>
<td>Niobium</td>
</tr>
<tr>
<td>Nb$_3$Ga</td>
<td>Niobium-gallium</td>
</tr>
<tr>
<td>Nb$_3$Ge</td>
<td>Niobium-germanium</td>
</tr>
<tr>
<td>Nb$_3$Sn</td>
<td>Niobium-tin</td>
</tr>
<tr>
<td>NbTi</td>
<td>Niobium titanium</td>
</tr>
<tr>
<td>NZPV</td>
<td>Normal zone propagation velocity</td>
</tr>
<tr>
<td>O$_2$</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>Pd</td>
<td>Palladium</td>
</tr>
<tr>
<td>PIT</td>
<td>Powder-in-tube</td>
</tr>
<tr>
<td>Pt</td>
<td>Platinum</td>
</tr>
<tr>
<td>PLD</td>
<td>Pulsed Laser Deposition</td>
</tr>
<tr>
<td>RABiTS</td>
<td>Rolling-assisted-biaxially-textured-substrates</td>
</tr>
<tr>
<td>RTD</td>
<td>Resistance Temperature Detector</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>STO</td>
<td>SrTiO$_3$</td>
</tr>
<tr>
<td>TF</td>
<td>Toroidal field</td>
</tr>
<tr>
<td>TFA-MOD</td>
<td>Trifluoroacetates-metal organic deposition</td>
</tr>
<tr>
<td>TBCCO</td>
<td>Thallium barium calcium copper oxide (Tl$_2$Ba$_2$Ca$_2$Cu3O${10}$)</td>
</tr>
<tr>
<td>Y123</td>
<td>Yttrium barium copper oxide</td>
</tr>
<tr>
<td>YBCO</td>
<td>Yttrium barium copper oxide (YBa$_2$Cu3O${7.8}$)</td>
</tr>
<tr>
<td>Y$_2$O$_3$</td>
<td>Yttrium oxide</td>
</tr>
<tr>
<td>YSZ</td>
<td>Yttria-stabilized zirconia</td>
</tr>
</tbody>
</table>