Contents

Chapter – I: Introduction
1.0 The Importance of Reactive Power .. 1
1.1 Sources of Reactive Power ... 2
1.2 The Problem of Reactive Power ... 2
1.3 Cost of Reactive Sources ... 3
1.4 Problem Formulation .. 4
1.5 Solution of the Reactive Power Problem .. 7
1.6 A Brief Review of the Solution Techniques 9
1.7 Necessity of Using Non-Classical Approaches 20
1.8 A Brief Review of the Evolutionary Solution of the reactive Power Problem .. 21
1.9 Scope of the Present Work .. 21

Chapter – II: Framework of the Reactive Power Optimization using Evolutionary Approach
2.0 Introduction .. 23
2.1 Problem Formulation ... 23
2.2 Solution Algorithm ... 25
2.3 Load Flow Solution with Modified Q-Settings 26
2.4 Sensitivity to Tap Changer Ratio ... 29
2.5 Transmission Loss Sensitivities ... 30
2.6 Linear Programming Formulation in terms of the Loss Sensitivities .. 31
2.7 The Simulated Annealing Technique .. 32
 2.7.1.1 Perturbation of Capacitor Settings 33
 2.7.1.2 Tap Changer Perturbation ... 35
 2.7.1.3 Generator Reactive Power .. 35
2.8 Hybrid Evolutionary Algorithm ... 35
2.9 Conclusion .. 40
Chapter – III: Application of Evolutionary Algorithms in Reactive Power Optimization Problem

3.0 Introduction 42

3.1 Brief Description of Genetic Algorithm 42

3.1.1 Solution of Reactive Power Problem using GA 43

3.1.2 Hybrid Approach 47

3.1.2.1 Hybrid Genetic Algorithm with LP based Improvement Scheme 47

3.1.2.2 Genetic Algorithm and Simulated Annealing Combination 50

3.1.2.3 Genetic Algorithm, Simulated Annealing and Linear Programming Combination 52

3.2 PSO Method in Brief 58

3.2.1 Hybrid Particle Swarm Optimization Technique with LP based Improvement Scheme 62

3.2.2 Simulated Annealing and Particle Swarm Optimization Technique 64

3.2.3 Simulated Annealing, Particle Swarm Optimization Techniques and Linear Programming 67

3.3 Differential Evolution (DE) Method in Brief 73

3.3.1 Hybrid Approach in DE 75

3.3.1.1 Differential Evolution with Linear Programming 76

3.3.1.2 Differential Evolution with Simulated Annealing 78

3.3.2 Simulated Annealing, Differential Evolution and Linear Programming Technique 80

3.4 Comparative Analysis of GA, PSO and DE Algorithms on Reactive Power Problem 86

3.4.1 Comparison between GA, PSO and DE 86

3.4.2 Comparison between GA and its associated Hybrid Techniques 91
3.4.3 Comparison between PSO and its associated Hybrid Techniques

3.4.4 Comparison between DE and its associated Hybrid Techniques

3.5 Conclusion

Chapter – IV: A Decomposition Approach for Combined Heuristic and Evolutionary Solution of the Reactive Power Problem

4.0 Introduction

4.1 The Proposed Approach

4.2 The Heuristic Technique for the Capacitor Installation Problem

4.3 The Evolutionary Solution

4.4 The Mixed Heuristic and Evolutionary Algorithm

4.5 Application Results

4.6 Conclusion

Chapter – V: Capacitor Placement in Radial Distribution System Using A Simplified Heuristic Technique

5.0 Introduction

5.1 Proposed Method

5.2 Reactive Power Flow

5.3 Optimum Compensation Level

5.4 Feasibility of Capacitor Installation

5.5 Cost Calculation

5.6 Application of the Method to Distribution Network

5.7 Conclusion

Chapter – VI: Conclusion

6.0 Achievements

6.1 Limitations

6.2 Scope of Future Research

Appendix

Reference