REFERENCES


References


References


References


References


Gibala, M. (2009). Molecular responses to high-intensity interval exercise This paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference-Muscles as Molecular and Metabolic Machines, and has undergone the Journal's usual peer review process. *Applied Physiology, Nutrition, and Metabolism, 34*(3), 428-432.


References


References


Trinder, P., & Webster, D. (1984). Determination of HDL-Cholesterol Using 2, 4, 6-
Tribromo-3-Hydroxybenzoic Acid with a Commercial CHOD—PAP Reagent. 
*Annals of Clinical Biochemistry: An international journal of biochemistry in 
medicine, 21*(5), 430-433.


interval training and slow, continuous training on VO2max of school going non-

Vogiatzis, I., Terzis, G., Nanas, S., Stratakos, G., Simoes, D. C., Georgiadou, O., & 
with advanced COPD. *Chest Journal, 128*(6), 3838-3845.

human muscle fibre types during exhaustive exercise of short duration. *Acta 
physiologica scandinavica, 144*(2), 135-141.

Walsh, N. P., Blannin, A. K., Clark, A. M., Cook, L., Robson, P. J., & Gleeson, M. 
(1998). The effects of high-intensity intermittent exercise on the plasma 
concentrations of glutamine and organic acids. *European journal of applied 
physiology and occupational physiology, 77*(5), 434-438.

Warburton, D. E., McKenzie, D. C., Haykowsky, M. J., Taylor, A., Shoemaker, P., 
interval training for the rehabilitation of patients with coronary artery disease. 
*The American journal of cardiology, 95*(9), 1080-1084.


disease in childhood, 91*(7), 612-617.


