Chapter 1

Signaling Dynamics among Morpho-pathogenic Determinants and Mating Regulators of Candida albicans

1. 0. INTRODUCTION 1

1. 1. MAJOR POSITIVE REGULATORS FOR MORPHOGENESIS AND VIRULENCE 2

1. 1. 1. Mitogen Activated Protein Kinase Pathway 2

1. 1. 2. Acid proteinase -related gene ACPR/CPH1 encodes an important transcription factor for morphogenesis and mating 4

1. 1. 3. cAMP-PKA Pathway 7

1. 1. 3. 1. cAMP level and Morphogenesis 7

1. 1. 3. 2. Adenylate Cyclase-Associate Protein gene regulates bud-hyphae transition, filamentation and virulence 7

1. 1. 3. 3. Phosphodiesterase PDE2 gene expression counteracts CAP1 8

1. 1. 3. 4. Target of Protein kinase A 9

1. 1. 4. Role of calmodulin in morphogenesis 11

1. 1. 5. Ras1p, the master hyphal Regulator 12

1. 1. 5. 1. Coordination of G-protein with Ras1 signaling 12

1. 1. 6. EFG1, the major transcriptional Regulator 13

1. 1. 6. 1. Role of EFG1 in morphogenesis in C. albicans 13

1. 1. 6. 2. Adaptation of Efg1p morphogenetic pathway 13

1. 1. 6. 3. EFG1 and Phenotype Switching 15

1. 1. 6. 4. EFG1 and cell wall dynamics 16

1. 1. 6. 5. EFG1 and Cph2p regulate hyphal development via Tec1p 17

1. 1. 6. 6. Cph2p regulate hyphal development via Tec1p 18

1. 1. 7. Small acidic protein Bmh1 and pseudohyphal induction 19

1. 1. 8. Efg1p independent filamentation by Cdc5 19

1. 1. 9. Contribution of Fkh2p in pseudohyphae formation and virulence 19

1. 1. 10. Role of CaMcm1p in morphogenesis 20

1. 1. 11. Cdc42 and Cdc24 are required for invasive hyphal growth and pathogenicity 20

1. 1. 12. G1 Cyclin is necessary for maintenance of filamentous Growth 20

1. 1. 13. Farnesoic acid has a role in filamentous to yeast form transition 21

1. 2. MAJOR NEGATIVE REGULATORS FOR MORPHOGENESIS AND VIRULENCE 21

1. 2. 1. Transcriptional Repressor Tup1p 21

1. 2. 1. 1. CaTup1p repression mode of action with CaNrg1p and CaMig1p 22

1. 2. 1. 2. Ssn6p-Tup1p complex 23

1. 2. 2. Recruitment of hypoxic gene, Rfg1p in the general repression complex 24

1. 2. 3. CaRap1p, repressor of pseudohyphal growth under yeast growth condition 24

1. 2. 4. RPG-box binding factor, Rbf1p 24

1. 2. 5. Role of Rad6p in repression of hyphal growth 25

1. 2. 6. Hog1p and oxidative stress response 25

1. 3. N-ACETYLGLOUCOSAMINE CATABOLIC PATHWAY OF C. ALBICANS 26

1. 3. 1. N-ACETYLGLOUCOSAMINE CATABOLIC PATHWAY OF C. ALBICANS 26

1. 3. 1. The Nag Regulon 28

1. 3. 2. Regulation of the NAG cluster genes by GlcNAc 29
Table of Contents

1. 3. 5. β-N-acetylglucosaminidase and virulence
1. 4. KINASES IN SEARCH OF MORPHOGENESIS AND VIRULENCE
1. 5. ADHESINS
1. 5. 1. I. C. albicans adherence and HWP1
1. 5. 1. 2. Role of Hwp1p in morphogenesis and pathogenicity
1. 5. 1. 3. HWP1 and cellular signaling
1. 5. 1. 4. Role of HWP1 in mating
1. 5. 2. Role of INI in adhesion
1. 5. 3. ALS Family and Adhesion
1. 5. 3. 1. Role of ALS1 in morphogenesis, pathogenicity
1. 5. 3. 2. ALS1 and cellular signaling
1. 5. 3. 3. Other ALS1 genes
1. 6. EXTRACELLULAR HYDROLYTIC ENZYMES
1. 6. 1. Molecular and Biochemical properties of SAP
1. 6. 1. 1. Role of SAP genes in Pathogenicity
1. 6. 1. 2. SAP genes and Phenotype Switching
1. 6. 1. 3. SAP production and Adherence
1. 6. 1. 4. SAP expressions in yeast to hyphal transition
1. 6. 2. Phospholipase B
1. 7. pH REGULATION IN C. ALBICANS
1. 7. 1. Genes involves in pH regulation
1. 7. 2. pH response regulators
1. 7. 3. PacC related transcription factor, RIM101p-Dependent and -independent pathways
1. 7. 4. Alkalinity Mimicking Mutations truncating CaRIM101p
1. 7. 5. Diverged Binding Specificity of Rim101p
1. 8. AMINO ACID CONTROL REGULATES MORPHOGENESIS OF C. ALBICANS
1. 8. 1. Role of Gcn4 in morphogenesis in C. albicans
1. 8. 2. Phagocytosis by neutrophils induces an amino acid deprivation response in C. albicans
1. 8. 3. Amino acid incorporation and general amino acid permease
1. 8. 4. Transcriptional profile of CaGap1p
1. 8. 5. Role of GAT1 in virulence
1. 8. 6. Csy1, a nutrient sensor important for hyphal morphogenesis
1. 9. EMBEDDED/MICROAEROPHILIC CONDITIONS
1. 10. THIGMOTROPISM/CHEMOTROPISM AND SURFACE HYDROPHOBICITY
1. 11. MATING PATHWAY IN CANDIDA ALBICANS
1. 11. 1. Identification of Mating Type-Like Locus in C. albicans
1. 11. 2. Evidence of Mating of the “Asexual” Yeast, C. albicans
1. 11. 3. Mating-Type Locus control White-Opaque switching in Candida albicans
1. 11. 4. Mating pheromone and C. albicans
1. 11. 5. Genetic and Transcriptional Circuit Regulating Mating-Type in C. albicans and S. cerevisiae
1. 11. 6. Cell Biology of C. albicans during mating
1. 11. 7. Parasexual cycle of C. albicans
1. 11. 8. Mating and adaptation
1. 11. 9. Role of SIR2 and Histone deacetylase in phenotype-switching in C. albicans
Chapter 2

N-acetylglucosamine Signaling and the Functional Analysis of ‘Nag regulon’ in Candida albicans

2.0. INTRODUCTION
2.1. N-ACETYLGLUCOSAMINE PATHWAY
2.1.1. N-acetylglucosamine catabolic pathway genes
2.1.2. The N-acetylglucosamine metabolic pathway
2.1.3. Regulation of the N-acetylglucosamine catabolic genes by GlcNAc
2.2. IDENTIFICATION OF N-ACETYLGLUCOSAMINE INDUCIBLE GENES
2.2.1. Differential screening of C. albicans genomic library
2.2.2. Hybrid-selected mRNA Translation
2.2.3. Sequence analysis of N-acetylglucosamine (GlcNAc)- inducible clones from C. albicans
2.2.4. Expression profiles of GlcNAc-inducible genes
2.2.5. Expressions of GlcNAc inducible genes in absence of GlcNAc catabolic pathway
2.3. FUNCTIONAL ANALYSIS OF ‘NAG REGULON’
2.3.1. Mutation of ‘Nag regulon’ affects the morphogenesis and virulence
2.3.2. Isolation of the Nag genomic clone
2.3.3. Nag promoter Analysis
2.3.4. The Nag promoter, is not inducible in Saccharomyces cerevisiae
2.3.5. Nag promoter is inducible only in C. albicans
2.3.6. The ORFs of DAC1 and NAG1 are divergent (head-to-head) in the Nag regulon
2.3.7. Nag regulon of other organisms
2.4. BIDIRECTIONAL PROMOTER IS UNIQUE IN NAG REGULON OF C. ALBICANS
2.4.1. Characterization of the regulatory region of the Bidirectional promoter
2.4.2. FUNCTIONAL ANALYSIS OF BIDIRECTIONAL PROMOTER
2.4.2.1. Construction of vector containing bidirectional promoter
2.4.2.2. Transformation of C. albicans and identification of integration events
2.4.2.3. Expression of reporter genes under GlcNAc inducible condition
2.4.2.4. In vitro and in vivo expressions of LAC4 gene
2.4.2.5. In vitro GFP expression
2.4.2.6. In vivo expression of GFP
2.5. DISCUSSION
2.5.1. GlcNAc Catabolic and GlcNAc signaling pathways are distinct
2.5.2. Functional analysis of Bidirectional promoter
2.6. MATERIALS AND METHODS
2.6.1. Main Plasmid vectors and Strains used
2.6.2. Media and Solutions
2.6.3. Maintenance and growth of yeasts
2.6.4. Plasmid DNA Isolation
2.6.4.1. Small Scale Plasmid DNA Isolation
2.6.4.2. Medium Scale Plasmid DNA Isolation
2.6.5. In vitro DNA manipulations
2.6.5.1. Restriction Analysis
Table of Contents

2.6.5.2. Gel Electrophoresis 100
2.6.5.3. PCR Amplification and Optimization 101
2.6.5.4. Optimizations 101
2.6.5.5. Subcloning into pBluescript and pGEMT-Easy 102
2.6.6. Transformation of *E. coli* 102
2.6.6.1. Preparation of *E. coli* DH5α Competent Cells 102
2.6.6.2. Transformation of competent cells 103
2.6.6.3. Plating of Transformation Mix 103
2.6.6.4. Screening and Analysis of Recombinants 104
2.6.7. DNA Sequencing 104
2.6.7.1. Preparation of double stranded DNA template and sequencing reactions 104
2.6.7.2. Casting sequencing Gel 104
2.6.7.3. Electrophoresis 105
2.6.7.4. Preparation of sequencing gel for autoradiography 105
2.6.7.5. Reading the sequence 106
2.6.7.6. Double stranded DNA Sequencing using ALFexpress DNA Sequencer (Pharmacia Biotech) 106
2.6.7.7. DNA sequence analysis and homology search 106
2.6.8. Genomic DNA Isolation from *C. albicans* 106
2.6.9. RNA isolation from *Candida albicans* 107
2.6.10. Agarose gel electrophoresis of RNA and Northern blotting 108
2.6.11. Preparation of Probe 108
2.6.12. Nucleic Acid hybridization 109
2.6.13. Induction with GlcNAc 110
2.6.14. Yeast Transformation 110
2.6.15. β-galactosidase assay 111
2.6.16. In vitro GFP expression studies 111
2.6.17. Strain injection techniques 111
2.6.18. Preparation of blood serum 112
2.6.19. Mice 112
2.6.20. Fluorescence microscopy 112

Chapter 3

Cloning, complementation, expression and mutation studies of CaGAPI gene in Candida albicans

3.0. INTRODUCTION 113
3.1. Nitrogen regulation and general amino acid permease activity in *S. cerevisiae* 114
3.1.1. Nitrogen Regulation (Nitrogen Catabolic Repression) 114
3.1.2. The core pathway for nitrogen assimilation 115
3.1.3. The elements of nitrogen regulation 116
3.1.4. Transcription factors and their targets 118
3.1.5. Nitrogen-regulated intracellular sorting of amino acid permeases 119
3.1.6. Post-transcriptional regulation of general amino acid permease, Gap1p 120
3.1.7. General amino acid permease acts as an amino acid sensor 121
3.2. MATERIALS AND METHODS 122
3.2.1. Strains and Plasmids used 122
3.2.2. Media and Solutions 122
3.2.1. Growth and Maintenance of strains
3.2.2. Storage of C. albicans and E. coli strains
3.2.3. Isolation of CaGAP1
3.2.4. Cloning of the CaGAP1 gene
3.2.5. Construction of CaGAP1 expression vector plasmid of S. cerevisiae
3.2.6. Transformation and screening of recombinants
3.2.7. DNA Sequence Analysis
3.2.8. Complementation study of CaGAP1 gene in S. cerevisiae
3.2.9. Assay of amino acid uptake
3.2.10. GlcNAc Induction studies of CaGAP1
3.2.11. Construction of CaGAP1 expression vector pFL61
3.2.12. Selection of transformants
3.2.13. Construction of disruption cassette
3.2.14. First allele disruption of CaGAP1 in C. albicans strain CAF3-1
3.2.15. Curing of URA3 Marker
3.2.16. Disruption of Second Alleles
3.2.17. Construction of CaGAP1 revertant strain, GP57315 in C. albicans
3.2.18. Preparation of CaGAP1 revertant construct
3.2.19. Construction of revertant strain
3.2.20. Southern Analysis
3.2.21. Induction of filamentation by Serum and GlcNAc
3.2.22. Morphogenesis studies in solid media
3.2.23. Determination of virulence (Murine Model)
3.3 RESULTS
3.3.1. Sequence analysis of the CaGAP1 gene in Candida albicans
3.3.2. Promoter analysis of CaGAP1 gene
3.3.3. Hydropathy profile
3.3.4. CaGAP1 gene present as a single copy number in genome
3.3.5. C. albicans CaGAP1 is a functional homologue of S. cerevisiae GAP1
3.3.6. Effect of nitrogen source on the amino acid analog resistant phenotypes
3.3.7. CaGAP1 mutation affects Citrulline uptake
3.3.8. Effect of different nitrogen sources on GlcNAc induction of CaGAP1
3.3.9. Expression of CaGAP1 is regulated by Cph1p mediated Ras1p Signaling but is independent of Efg1p
3.3.10. Physiological Effects of Disruption of CaGAP1 gene
3.3.11. Effect of CaGAP1 null mutation on virulence
3.3.12. Effect of CaGAP1 disruption on germ tube inducing liquid media
3.3.13. Effect of CaGAP1 mutation on filament inducing solid media
3.4. DISCUSSION
Chapter 4

Fundamental regulation of CaGAP1: interrelation with GlcNAc inducible protein synthesis

4. 0. INTRODUCTION 139
4. 1. N-acetylglucosamine induces amino acid pool and also protein synthesis during yeast-to-hyphal transition in C. albicans 140
4. 1. 1. Uptake and incorporation of amino acids during GlcNAc-induced morphogenesis 140
4. 1. 2. Protein synthesis in the cells separated at different stages of yeast-mycelial transition 142
4. 1. 3. Amino acid pool at different stages of yeast to hyphal transition in GlcNAc 142
4. 2. N-acetylglucosamine induced yeast-to-hyphal transition is dependent on calcium signaling 143
4. 2. 1. Involvement of a Ca⁺-calmodulin interaction in the yeast to hyphal transition in C. albicans 144
4. 2. 2. Involvement of Calcineurin in yeast-to-hyphal transition 144
4. 2. 3. Characterization of Ca⁺/Calmodulin dependent protein kinase in C. albicans 144
4. 2. 4. Role of cAMP dependent protein kinase (PKA) in yeast-to-hyphal transition 145
4. 2. 5. Effect of H-89 on GlcNAc-induced germ-tube formation 145
4. 2. 6. General amino acid permease activity is dependent on cAMP in S. cerevisiae 145
4. 3. Involvement of Translation elongation factor 2 (EFT2) in protein synthesis 146
4. 3. 1. cAMP dependent Protein synthesis regulated by translation elongation factor 2 146
4. 3. 2. Elongation factor 2 as a novel target for selective control of protein synthesis 146
4. 3. 3. Translation elongation factor 2 is encoded by a single essential gene in C. albicans 147
4. 3. 4. C. albicans EFT2 has an intron 147
4. 3. 5. CaEFT2 is a GlcNAc inducible clone 148
4. 4. MATERIALS AND METHODS 148
4. 4. 1. Strains and Media 148
4. 4. 2. Differential screening of C. albicans genomic library 148
4. 4. 3. Hybrid-selected Translation 148
4. 4. 4. Induction by GlcNAc 148
4. 4. 5. Induction by serum 149
4. 4. 6. Northern Blot analysis 149
4. 4. 7. Uptake of N-acetyl-D-glucosamine 149
4. 4. 8. cAMP assay 150
4. 4. 9. Protein synthesis measurement 150
4. 4. 10. Assay of permease activity 150
4. 5. RESULTS 151
4. 5. 1. Cloning of CaEFT2 and CaGAP1 151
4. 5. 2. Promoter sequence analysis of CaEFT2 and CaGAP1 151
4. 5. 3. Expression of CaEFT2 and CaGAP1 during dimorphic transition of C. albicans 151
4. 5. 4. Rate of Protein synthesis during GlcNAc induced dimorphic transition of C. albicans 152
4. 5. 5. Rate of GlcNAc incorporation during GlcNAc induced dimorphic transition of C. albicans 153
4. 5. 6. Both CaEFT2 and CaGAP1 expression is sensitive to
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.7</td>
<td>Level of total cellular cAMP during growth in GlcNAc</td>
<td>153</td>
</tr>
<tr>
<td>4.5.8</td>
<td>Effect of exogenous dbcAMP on CaEFT2 and CaGAP1 expression</td>
<td>154</td>
</tr>
<tr>
<td>4.5.9</td>
<td>TFP affects protein synthesis during growth in GlcNAc induced yeast-to-hyphal transition period (60 minute)</td>
<td>154</td>
</tr>
<tr>
<td>4.5.10</td>
<td>CaGap1p activity is also regulated by a calmodulin dependent protein kinase C</td>
<td>155</td>
</tr>
<tr>
<td>4.5.11</td>
<td>Effect of mutation of some hypha-specific genes on the expression of CaEFT2 and CaGAP1</td>
<td>156</td>
</tr>
<tr>
<td>4.5.12</td>
<td>Effect of TFP, H89 and dbcAMP on protein synthesis in the above mutants</td>
<td>156</td>
</tr>
<tr>
<td>4.5.13</td>
<td>Effect of TFP, H89 and dbcAMP on CaGap1p activity in the above mutants</td>
<td>157</td>
</tr>
<tr>
<td>4.6</td>
<td>DISCUSSION</td>
<td>158</td>
</tr>
</tbody>
</table>

SUMMARY

REFERENCES