In this chapter, we collect the basic definitions and theorems on graphs, which are needed for the subsequent chapters.

Definition 2.1 A graph is a finite non-empty set of objects called vertices or nodes together with a set of unordered pairs of distinct vertices of G, called edges or lines. The vertex set and the edge set of G are denoted by $V(G)$ and $E(G)$ respectively. If $e = \{u, v\}$ is an edge, we write $e = uv$; we say that e joins the vertices u and v; u and v are adjacent vertices; u and v are incident with e. If two vertices are not joined, then we say that they are nonadjacent. If two distinct edges are incident with a common vertex, then they are said to be adjacent edges.

Definition 2.2 The cardinality of the vertex set of a graph G is called the order of G and is denoted by ‘n (or) p’. The cardinality of the edge set of G is called the size of G and is denoted by ‘m (or) q’. A graph with n (or) p vertices and m (or) q edges is called a (n, m) or (p, q) - graph.

Definition 2.3 Let u and v be (not necessarily distinct) vertices of a graph G. A **u-v walk** of G is a finite alternating sequence $w (u,v) : u = u_0e_1u_1e_2 \ldots e_nu_n = v$, of vertices and edges beginning with vertex u and ending with vertex v such that, $e_i = u_{i-1}u_i$, $i = 1, 2, 3, \ldots, n$. It is important to mention that the vertices need...
not be distinct and the same holds for the edges. The number \(n \) is called the \textbf{length} of the walk.

Definition 2.4 The walk is said to be \textbf{open}, if \(u \) and \(v \) are distinct vertices, it is \textbf{closed} otherwise. A walk in which all the edges are distinct is called a \textbf{trail}.

Definition 2.5 A walk in which all the vertices are distinct is called a \textbf{path}. A path on \(n \) vertices is denoted by \(P_n \).

Definition 2.6 A \textbf{cycle} is a closed walk \(w(u, v) \) in which all the vertices are distinct except \(u = v \). A \textbf{cycle} on \(n \) vertices is denoted by \(C_n \).

Definition 2.7 A graph \(G_1 \) is isomorphic to a graph \(G_2 \), if there exists a \textbf{bijection} from \(V(G_1) \) to \(V(G_2) \) such that \(uv \in E(G_1) \) if and only if \((u)(v) \in E(G_2) \). In other words, two graphs \(G_1 \) and \(G_2 \) are \textbf{isomorphic} (written \(G_1 \cong G_2 \) or sometimes \(G_1 = G_2 \) and called equal) if there exists a one to one correspondence between their vertex sets, which preserves adjacency.

Definition 2.8 A graph \(H \) is called a \textbf{subgraph} of \(G \), if \(V(H) \subseteq V(G) \) and \(E(H) \subseteq E(G) \).

Definition 2.9 A \textbf{spanning subgraph} of \(G \) is a subgraph \(H \) with \(V(H) = V(G) \).

Definition 2.10 Any sets of vertices of \(G \), the \textbf{induced subgraph} \(<S>\) is the maximal subgraph of \(G \) with vertex set \(S \). Thus two vertices of \(S \) are adjacent in \(<S>\) if and only if they are adjacent in \(G \).
Definition 2.11 The degree of vertex v in a graph G is the number of edges of G incident with v and is denoted by deg G(v) or deg(v) or d(v). The minimum and maximum degrees of vertices of G are denoted by d(G) and D(G) respectively.

Definition 2.12 A vertex of degree zero in G is called an isolated vertex.

Definition 2.13 A vertex of degree one is called a pendant vertex or an end vertex of G.

Definition 2.14 Any vertex that is adjacent to a pendant vertex is called a support.

Definition 2.15 The edge e = uv is called an isolated edge if deg e = 0 and pendant edge if either u or v is pendant vertex not both.

Definition 2.16 A graph G is regular of degree ‘r’ if and only if every vertex of G has degree r. Such graphs are called r-regular graphs. Any 3-regular graph is called a cubic graph.

Definition 2.17 A graph G is complete if every pair of its vertices is adjacent. A complete graph on n vertices is denoted by K_n.

Definition 2.18 A clique of a graph G is a maximal complete subgraph of G. The number of vertices in a clique of G is called the clique number of G and is denoted by (G).
Definition 2.19 A bipartite graph is a graph whose vertex $V(G)$ can be partitioned into two non-empty subsets V_1 and V_2 such that every edge of G has one end in V_1 and other end in V_2; (V_1, V_2) is called a bipartition of G.

Definition 2.20 Every vertex of V_1 is joined to every vertices of V_2, then G is called a complete bipartite graph. The complete bipartite graph with bipartition (V_1, V_2) such that $|V_1| = m$ and $|V_2| = n$ is denoted by $K_{m,n}$.

Definition 2.21 A star is a complete bipartite graph $K_{1,n}$.

Definition 2.22 A graph G is said to be connected, if a path joins any two distinct vertices of G, otherwise G is said to be disconnected.

Definition 2.23 A maximal connected subgraph of G is called a component of G. Thus, a disconnected graph has at least two components. The number of components in a graph G is denoted by (G).

Definition 2.24 A graph is acyclic, if it has no cycles. A tree is a connected acyclic graph.

Definition 2.25 A spanning subgraph of G, which is a tree, is called a spanning tree of G.

Definition 2.26 A graph G is unicyclic, if it is connected and contains exactly one cycle.
Definition 2.27 Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be any two graphs. The **union** of G_1 and G_2 is the graph $G = G_1 \sqcup G_2$ with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2$. The **join** of G_1 and G_2 is the graph $G = G_1 + G_2$ with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2 \cup \{uv : u \in V_1, v \in V_2\}$.

Definition 2.28 For $n \geq 4$, the **wheel** W_n is defined to be the graph $K_1 + C_{n-1}$.

Definition 2.29 For any connected graph G, the graph with n-**components** each isomorphic to G is written by nG.

Definition 2.30 The **corona** $G_1 \circ G_2$ is defined as the graph G obtained by taking one copy of G_1 of order p_1 and p_1 copies of G_2 and then joining the i^{th} vertex of G_1 to every vertex in the i^{th} copy of G_2.

Definition 2.31 A vertex v of a graph G is called a **cut-vertex** of a graph G, if the removal of v increases the number of components. Thus, if v is a cut vertex of a connected graph G, then $G - v$ is disconnected.

Definition 2.32 An edge e of a graph G is called a **cut-edge or bridge** if the removal of e increases the number of components.

Definition 2.33 A **block** of a graph is a maximal connected non-trivial subgraph without cut-vertices.

Theorem 2.34 Every non-trivial tree has at least two end vertices.

Definition 2.35 The **connectivity** $\gamma(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph or K_1, the
trivial graph. Thus, the **connectivity** of a disconnected graph is zero, while the connectivity of a connected graph with a cut-vertex is 1.

Definition 2.36 The **edge connectivity** \(\lambda(G) \) of a graph \(G \) is the minimum number of edges whose removal results in a disconnected or trivial graph.

Theorem 2.37 For any graph \(G \), \(\lambda(G) \leq \delta(G) \leq \chi(G) \).

Definition 2.38 A graph \(G \) is **\(n \)-connected** if \(\lambda(G) \geq n \) and **\(n \)-edge connected** if \(\lambda(G) \geq n \).

Definition 2.39 Let \(G \) be a connected graph and let \(v \) be a vertex of \(G \). The **eccentricity** \(e_G(v) \) of \(v \) is the distance to a vertex farthest from \(v \). Thus, \(e_G(v) = \max\{d_G(u, v) : u \in V(G)\} \) where the distance \(d_G(u, v) \) between \(u \) and \(v \) is the minimum length of a path joining them.

Definition 2.40 The minimum and maximum eccentricities are the **radius** and **diameter** of \(G \) denoted \(r(G) \) and \(\text{diam}(G) \) respectively.

Definition 2.41 A vertex \(u \) is a **neighbour** of \(v \) in \(G \), if \(uv \) is an edge of \(G \), and \(u \neq v \). The set of all neighbours of \(v \) is the (open) neighbourhood of \(v \) or the neighbour set of \(v \) and is denoted by \(N(v) \); the set \(N[v] = N(v) \setminus \{v\} \) is the closed neighbourhood of \(v \) in \(G \).

Definition 2.42 The **open neighbourhood** \(N(S) \) of a set \(S \) of vertices is the set of all vertices adjacent to the vertices in \(S \).

Definition 2.43 \(N[S] = N(S) \setminus \{v\} \) is called the **closed neighbourhood** of \(S \).
Definition 2.44 A **subdivision** of an edge $e = uv$ of a graph G is the replacement of the edge e by a path (u, w, v). The graph obtained from G by subdividing each edge of G exactly once is called the **subdivision graph** of G denoted by $S(G)$.

Definition 2.45 A vertex and an edge are said to **cover** each other if they are incident. A set of vertices which cover all the edges of a graph is called a **cover** of G. The smallest number of vertices in any cover for G is called its **covering number** and is denoted by θ_0.

Definition 2.46 A set S of vertices (edges) in a graph G is said to be an **independent (edge independent)** set if no two vertices (edges) in S are adjacent in G.

Definition 2.47 S is called a **maximal** independent (edge independent) set provided it is not a proper subset of some other independent (edge independent) set, The maximal cardinality of an independent (edge independent) set of G is called the **independence (edge independence)** number of G and is denoted by $\theta_0(1)$.

Definition 2.48 Any set M of independent lines of a graph G is called a **matching** of G.

Definition 2.49 If $uv \in M$, we say that u and v are **matched** under M. We say that, the points u and v are M – **saturated**. A matching M is called a **perfect matching** if every point of G is M – saturated.
Theorem 2.50 For any non-trivial connected graph G, \(0 + 0 = p = 1 + 1 \).

Definition 2.51 For any real number \(x \), \(\lfloor x \rfloor \) denotes the largest integer less than or equal to \(x \) and \(\lceil x \rceil \) denotes the smallest integer greater than or equal to \(x \).

Definition 2.52 A set \(S \subseteq V(G) \) is said to be a **dominating set** in \(G \), if every vertex in \(V - S \) is adjacent to some vertex in \(S \). The **domination number** of \(G \) is the minimum cardinality taken over all dominating sets in \(G \) and is denoted by \(\gamma(G) \).

Definition 2.53 A dominating set \(D \) of a graph \(G \) is said to be **independent dominating set** if no two vertices in \(D \) are adjacent. The **independent domination number** is the minimum cardinality taken over all independent dominating sets of \(G \) and is denoted by \(\gamma_i(G) \) or \(i(G) \).

Definition 2.54 A dominating Set \(D \) is a **total dominating set** if the induced subgraph \(D \) has no isolated vertices. The **total domination number** \(\gamma_t(G) \) of a graph \(G \) is the minimum cardinality of a total dominating set.

Definition 2.55 A dominating set \(D \) is a **connected dominating set** if the induced subgraph \(D \) is connected. The **connected domination number** \(\gamma_c(G) \) of a graph \(G \) is the minimum cardinality of a connected dominating set.

Definition 2.56 A Set \(S \subseteq V \) is a **complementary connected dominating set**, if \(S \) is a dominating set of \(G \) and the induced subgraph \(V - S \) is connected.
The **complementary connected domination number** \(cc(G) \) is the minimum cardinality taken over all complementary connected dominating sets in \(G \).

Theorem 2.57 For any graph \(G \), \(cc(G) \leq n \).

Theorem 2.58 For any graph \(G \), \(cc(G) = n - 1 \) if and only if \(G \) is a star.

If \(G \) is not a star, then \(cc(G) = n - 2, (n \geq 3) \).

Theorem 2.59 For any graph \(G \), \((G) \leq cc(G) + 1 \).

Theorem 2.60 [Due to Brook] If \(G \) is neither a complete graph nor an odd cycle, then \((G) = (G) \).

Theorem 2.61 If \(G \) is a graph of order \(p \), with maximum degree \(\Delta \), then \(p / (\Delta + 1) \).

Definition 2.62 A Colouring of a graph is an assignment of colours to its vertices so that no two adjacent vertices have the same color. An \(n \)–colouring of a graph \(G \) uses \(n \) colours. The **Chromatic number** is defined to be the minimum \(n \) for which \(G \) has an \(n \)-colouring.