Contents

1. **Introduction**
 - Genetic Engineering in plants .. 1
 - Agronomic Traits ... 2
 - Insects and Disease Resistance ... 2
 - Virus Resistance ... 2
 - Bacterial and Fungal Resistance .. 2
 - Stress Tolerance .. 3
 - Herbicide Tolerance .. 3
 - Genetic Engineering in Floriculture .. 4
 - Oral Vaccines Production .. 5
 - Post-harvest Traits ... 5
 - Carbohydrate Modification .. 6
 - Oil Modification .. 6
 - Protein Modification ... 6
 - Genetic Engineering of Seed Storage protein 7
 - Classification of seed storage proteins ... 7
 - Seed Development ... 8
 - Expression of Storage Protein Genes During Plant Development 8
 - Mechanism of Control ... 9
 - Control of Gene Expression at the Transcriptional Level 9
 - Control of gene Expression at the Posttranscriptional Level 10

1.4 Gene Transfer .. 11
 - Transgene constructs .. 11
 - Genetic Markers ... 12
 - Methods of Gene Transfer .. 12
 - *Agrobacterium*-mediated Gene Transfer 12
 - Novel Viral Vectors .. 13
 - Direct Gene Transfer ... 14
 - Gene Tagging and Gene Targetting .. 14
 - Field Trialling of Transgenic Plants and Commercialization 15
 - Field Trials .. 15
 - Commercialization of Transgenic Plants 15
 - Aim and Scope ... 16

2. **Cloning and Characterization of *Aml* Gene Architecture**
 - Introduction .. 18
 - Materials and Methods .. 19
 - Plasmids and Strains used .. 20
 - Media and Solutions .. 20
 - Isolation of High Molecular Weight Genomic DNA 21
2.2.4 Agarose Gel Electrophoresis
2.2.5 Genomic Southern and Genome Complexity
2.2.5.1 Estimation of Genome Size
2.2.6 Construction of Genomic Library
2.2.6.1 Optimization of Sau3A1 Partial Digest of Genomic DNA
2.2.6.2 Large Scale Preparation
2.2.6.3 Partial Fill-in Reaction for Cloning into XhoI Half-Site Arms
2.2.6.4 Ligation
2.2.6.5 Packaging of Ligated DNAs
2.2.6.6 Titration of the Genomic Library
2.2.6.7 Plating and Estimation of Titer by Spotting
2.2.7 Screening of Primary Library
2.2.7.1 Plaque lifting and Membrane Treatment
2.2.7.2 Preparation of 1.2kb Probe
2.2.7.3 Hybridization with Labelled Probe
2.2.7.4 Picking up the Positive Signals
2.2.8 Preparation of Plate Lysate
2.2.9 Isolation of DNA from Recombinant Phages
2.2.10 Restriction Mapping of Lambda Clones
2.2.11 Subcloning
2.2.12 Transformation of E. Coli
2.2.13 Screening and Analysis of Recombinants
2.2.14 Isolation of Plasmid DNA and Restriction Analysis
2.2.14.1 Small Scale Plasmid DNA Isolation
2.2.14.2 Medium Scale Plasmid DNA Isolation
2.2.15 Generation of Unidirectional Nested Deletions with ExonucleaseIII
2.2.16 Double Stranded DNA Sequencing by Dideoxy Chain Termination Method
2.2.16.1 Preparation of Double Stranded DNA Template and Sequencing Reactions
2.2.16.2 Casting Sequencing Gel
2.2.16.3 Running Conditions
2.2.16.4 Sequence Storage and Reading
2.2.16.5 DNA Sequence Analysis and Homology Search
2.2.17 PCR Amplification of Genomic DNA and Fine Mapping
2.2.17.1 Designing of Primer
2.2.17.2 PCR Amplification of Genomic DNA Using F-51 and R-1044
2.2.17.3 Cloning of the PCR Product in T-Vector
2.2.17.4 Restriction Mapping of pSB4 and pSB5
2.2.17.5 Sequencing of pSB4
2.2.17.6 Manual Sequencing Gel
2.2.17.7 Reading the Sequence
2.2.17.8 DNA Sequence Analysis and Homology Search
2.2.18 Gel Mobility Shift Assay
2.2.18.1 Preparation of Nuclear Extracts
3. **Expression of AmA1 Gene**

3.1 Bacterial Expression Of AmA1

3.1.1 Introduction

3.1.2 Materials and Methods

3.1.3 Media and Solutions

3.1.4 Cloning of AmA1 in pET22b Expression Vector

3.1.4.1 Intracellular Expression

3.1.4.2 Periplasmic Expression

3.1.5 Screening of Recombinant Clones

3.1.6 Analysis of Recombinant Clones

3.1.7 Time Course Induction of pET22b Expressed Proteins

3.1.8 Gel Electrophoresis of Proteins

3.1.9 Result and Discussion

3.1.9.1 Bacterial Expression of AmA1

3.2 Expression of AmA1 in Yeast

3.2.1 Introduction

3.2.2 Materials and Methods

3.2.3 Media and Solutions

3.2.4 Cloning of AmA1 in Yeast Expression Vectors

3.2.4.1 Constitutive Expression

3.2.4.2 Inducible Expression

3.2.5 Screening of Recombinant Clones

3.2.6 Analysis of Recombinant Clones

3.2.7 Electro-transformation of Yeast Strains

3.2.8 Results and Discussion

3.2.8.1 Expression of AmA1 in Yeast

3.3 Expression of AmA1 in Plants

3.3.1 Introduction

3.3.2 Materials and Methods
3.3.3 Growth Conditions of Plants
3.3.4 Bacterial Strains and Plasmids
3.3.5 PCR Primers and Sequencing Primers
3.3.6 Southern Bloting of Genomic DNA from Amaranthus, Nicotiana, Potato and Rice
3.3.7 Engineering of Expression Vectors for Plant Transformation
3.3.7.1 Constructs for Constitutive Expression
3.3.7.2 Constructs for Developmentally Regulated Inducible Expression
3.3.8 Mobilization of Plasmid Constructs into Recipient Agrobacterium Strain
3.3.9 Isolation of Total Nucleic Acids from Transconjugants
3.3.10 Confirmation of Transconjugants by Southern Hybridization
3.3.11 Tobacco Transformation
3.3.12 Potato Transformation
3.3.13 Rice Transformation
3.3.14 Molecular Analysis of Putative Transgenic Plants
3.3.14.1 DNA Extraction, Electrophoresis and DNA Gel Blot Analysis
3.3.14.4 Protein Extraction, Estimation and Immunoblot Analysis of Transgene Expression
3.3.14.5 Hygromycin Phosphotransferase (HPT) Assay
3.3.14.6 β-Glucuronidase Enzyme Assay for Chimeric Gene Expression
3.3.15 Results and Discussion
3.3.15.1 Homology of AmAl in Heterologous Plant Systems
3.3.15.2 β-GUS-AmAl chimeric genes
3.3.15.3 AmAl Gene Cassette
3.3.15.4 Conjugation of Recombinant Plasmids into Agrobacterium and Confirmation
3.3.15.5 Plant Transformation
3.3.15.6 Molecular Analysis of Transgenic Plants

4. Summary

5. References