Fig. 3.2 (a) Schematic diagram showing exploratory drilling operation in the zone-IV at the western block of the central area of Ramagiri Schist Belt.

Fig. 3.2 (b) Schematic diagram showing drilling in the zone - V at the central block of the Ramagiri Schist Belt.

Fig. 3.3 Longitudinal section of Mysore mine in the Gadag Schist Belt showing sample location.

CHAPTER 4

Fig. 4.1 Figure showing comparative REE analysis of rock standard 90-57 by ICP-AES at JNU with that of isotope dilution by Mass Spectrometer at S.U.N.Y., Stony Brook, USA.

CHAPTER 5

Fig. 5.1 Fe + Ti - Mg - Al ternary diagram for classification of Hutti metabasalts.

Fig. 5.2 [Mg] % versus [Fe] % diagram showing data points for the Hutti metabasalts.

Fig. 5.3 Multi element plots for different types of basaltic rocks from diverse tectonic settings.

Fig. 5.4 Primitive mantle normalised multi element variation diagram for the Hutti metabasalts.

Fig. 5.5 REE patterns of Hutti basalts showing LREE enriched and flat patterns.

Fig. 5.6 Ni versus Zr plot showing data points for the Hutti amphibolites.

Fig. 5.7 REE modelling for Hutti metabasalts.

Fig. 5.8 Comparison of Hutti metabasalts with that of Kolar and Ramagiri metabasalts and average composition of MORB, OFB and IAB, in the [Mg] % - [Fe] % diagram.
Fig. 5.9 REE patterns of tholeiites from Kolar Schist Belt.

Fig. 5.10 REE patterns of tholeiites from Ramagiri Schist Belt.

CHAPTER 6

Fig. 6.1 Schematic diagram showing Geochemical variations of elements from the ore vein to unaltered metabasalt in the Hutti Schist Belt.

Fig. 6.2 REE patterns of low temperature acid waters from Valles caldera geothermal fields, New Mexico.

Fig. 6.2a REE patterns of high temperature solutions from East Pacific Rise.

Fig. 6.3 Nd concentration versus pH plot for hydrothermal solutions from geothermal fields.

Fig. 6.4 REE patterns of samples from Oakley’s Reef profile.

Fig. 6.5 REE patterns of samples from Middle Reef profile.

Fig. 6.6 REE patterns of samples from REE patterns of samples from Zone - I Reef profile.

Fig. 6.7 REE patterns of samples from Strike Reef profile.

Fig. 6.8 REE patterns of bulk sulfide separates from ore veins in the Hutti mine.

Fig. 6.9 REE patterns of bulk sulfides from Wallrock alteration zone in the Hutti Schist Belt.

Fig. 6.10 REE patterns of host unaltered metabasalts from Ramagiri Schist Belt.

Fig. 6.11 REE patterns of ore zone and alteration zone in the Ramagiri Schist Belt.

Fig. 6.12 REE patterns of alteration zone and
bulk sulifides from them in the Western block of Ramagiri Schist Belt.

Fig. 6.12a REE patterns of a carbonaceous phyllite and bulk sulfides DC - 1 in the central block of the Ramagiri Schist Belt.

Fig. 6.13 Typical alteration zone normalised REE patterns of metabasalts from Hutti and Ramagiri Schist Belts.

Fig. 6.14 REE patterns of volcanics from the Gadag Schist Belt.

Fig. 6.15 REE patterns of alteration zone metagreywacke from the Mysore mine in the Gadag Schist Belt.

Fig. 6.16 REE patterns of host metagreywacke sample GD-4 and bulk sulfides separated from them in Gadag Schist Belt.

Fig. 6.17 REE patterns of host metagreywacke sample GDO-9 and bulk sulfides separated from them in Gadag Schist Belt.

Fig. 6.18 REE patterns of Pyrites separated from Argillites in the Gadag Schist Belt.

Fig. 6.19 REE pattern of bulk sulfides from vein quartz in the Chitradurga schist belt.

Fig. 6.20 REE patterns of ore vein, alteration zone and altered host amphibolites from the Kolar Schist Belt.

Fig. 6.21 Pb-Pb plot for the gold mineralised materials from the Kolar, Ramagiri and Hutti schist belts.

Fig. 7.1 Figure summarising the REE geochemistry of fluid alteration in the Kolar, Ramagiri and Hutti schist belts.
<table>
<thead>
<tr>
<th>Plate 3.1a</th>
<th>Photograph showing xenolites of metabasalts in the granite in the Uti area of Hutti Schist Belt.</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 3.1b</td>
<td>Photograph showing F3 open folds in the basalts of Chinchergi area, Hutti Schist Belt.</td>
<td>61</td>
</tr>
<tr>
<td>Plate 3.1c</td>
<td>Photomicrograph showing Hornblende "augen" in the coarse grained spotted variety of amphibolite in the Hutti Schist Belt.</td>
<td>61</td>
</tr>
<tr>
<td>Plate 3.1d</td>
<td>Photomicrograph showing a big crystal of sphene in the wallrock alteration zone in the Hutti Belt.</td>
<td>61</td>
</tr>
<tr>
<td>Plate 3.2a</td>
<td>Photomicrograph showing mainly hornblende phenocrysts in a plagioclase ground mass with lot of opaques in the Hutti amphibolite. Parallel nicols.</td>
<td>62</td>
</tr>
<tr>
<td>Plate 3.2b</td>
<td>Photomicrograph showing abundant rock fragments in the ore vein from Hutti gold mine. Crossed nicols.</td>
<td>62</td>
</tr>
<tr>
<td>Plate 3.2c</td>
<td>Photomicrograph showing extensive biotitization of the amphiboles in the wallrock alteration zone metabasalt from the Hutti Belt.</td>
<td>62</td>
</tr>
<tr>
<td>Plate 3.2d</td>
<td>Photomicrograph of an unaltered amphibolite from the Hutti Schist Belt. Crossed nicols.</td>
<td>62</td>
</tr>
<tr>
<td>Plate 3.3a</td>
<td>Photomicrograph of an ore vein showing a big crystal of quartz grain which is broken due to deformation. Crossed nicols.</td>
<td>63</td>
</tr>
<tr>
<td>Plate 3.3b</td>
<td>Photomicrograph of a wallrock alteration zone from the Ramagiri belt showing green schist facies mineral assemblages.</td>
<td>63</td>
</tr>
<tr>
<td>Plate 3.3c</td>
<td>Photomicrograph showing extensive carbonatization of wallrock in the Ramagiri belt. Crossed nicols.</td>
<td>63</td>
</tr>
<tr>
<td>Plate 3.3d</td>
<td>Photomicrograph showing extensive albitionization of wallrock in the Ramagiri belt. Crossed nicols.</td>
<td>63</td>
</tr>
</tbody>
</table>
Plate 3.4a Photomicrograph showing relict lenses of actinolite in the wallrock sample from Ramagiri belt. Crossed nicols.

Plate 3.4b Photomicrograph showing quartz veins in the chlorite - carbonate schist. Crossed nicols.

Plate 3.4c Photomicrograph showing sericitization of wallrock in the Ramagiri Schist Belt. Crossed nicols.

Plate 3.4d Photomicrograph showing low grade metamorphic alteration in the Gadag Schist Belt. Crossed nicols.

Plate 3.5a Photomicrograph showing euhedral arsenopyrite crystal in the Hutti ore vein. Crossed nicols.

Plate 3.5b Photomicrograph showing veins of sulfide minerals in the wallrock of Ramagiri belt. Crossed nicols.

Plate 3.5c Photomicrograph showing detrital oxide minerals (Magnetite ?) in the carbonaceous phyllite of the Ramagiri Schist Belt. Crossed nicols.

Plate 3.5d Photomicrograph showing deformation in the arsenopyrite crystal from the Hutti belt. Parallel nicols.

Plate 3.6a Photomicrograph showing fine grained scheelite mineralization in the Uti block of Hutti belt. Crossed nicols.

Plate 3.6b Photomicrograph showing deformation in the euhedral arsenopyrite rhomb in the Hutti belt. Parallel nicols.

Plate 3.6c Photomicrograph showing anhedral pyrrhotite in the wallrock alteration of Hutti belt. Crossed nicols.

Plate 3.6d Photomicrograph showing a big crystal of pyrite with inclusions of arsenopyrite. Parallel nicols.

Plate 3.7a Photomicrograph showing calcite vein cutting the schistosity of the host rock in the Hutti belt. Crossed nicols.
Plate 3.7b Photomicrograph showing fine grained Scheelite mineralization in the Hutti belt. Parallel nicols.

Plate 3.7c Photomicrograph showing sphene in the wallrock alteration zone in the Hutti belt. Parallel nicols.

Plate 3.7d Photomicrograph showing albitization of wallrock in the Hutti belt. Crossed nicols.