In this chapter we introduce the notion of radical in \(\Gamma \)-semi-
group similar to those which have been developed in semigroup.

In [18] Ravisankar and Shukla studied radicals of \(\Gamma \)-rings.
Here we first introduce the notion of right \(\Gamma \)-S-act over a
\(\Gamma \)-semigroup and then develop the notion of radical of a
\(\Gamma \)-semigroup with the help of right \(\Gamma \)-S-act. We find that the
radical of a \(\Gamma \)-semigroup [26] is a quasi-regular \(\Gamma \)-ideal
which contains each quasi-regular right \(\Gamma \)-ideal of the
\(\Gamma \)-semigroup.

1. **RIGHT \(\Gamma \)-S-ACT**

In this section first we give some examples which motivate
us to study \(\Gamma \)-S-act.

EXAMPLE 1.1. Let \(A, B, C \) be three nonempty sets, \(S = T(B, C) \),
the set of all mappings from the set \(B \) into the set \(C \),
\(\Gamma = T(C, B) \) and \(M = T(A, C) \). If for \(f, g \in S \) and \(\alpha, \beta \in \Gamma \) we
define \(fg \) to denote the usual composition of mappings then
\((S, \Gamma) \) is a \(\Gamma \)-semigroup. If \(x \in M \) and \(x\alpha f \) denotes the usual
mapping composition then we see that \(x\alpha f \in M \) and \((x\alpha f)\beta g =
x\alpha(f\beta g) \) for all \(f, g \in S, \alpha, \beta \in \Gamma \) and \(x \in M \).
EXAMPLE 1.2. Let A and B be two nonempty sets, $S = T(B, A)$, $\Gamma = T(A, B)$ where $T(A, B)$ has the usual meaning as in Example 1.1. For $f, g \in S$ and $\alpha \in \Gamma$ if fag denotes the composition of mappings then (S, Γ) is a Γ-semigroup. If we define a mapping from $A \times \Gamma \times S \to A$ by $(x, \alpha, f) \mapsto xaf$ where $xaf = (xa)f$, then we see that $xaf \in A$ and $(xaf)\beta g = x\alpha(f\beta g)$ for all $\alpha, \beta \in \Gamma$, $f, g \in S$ and $x \in A$.

EXAMPLE 1.3. Let S be the set of all $m \times n$ matrices, Γ be the set of all $n \times m$ matrices and M be the set of all $r \times n$ matrices over the field of real numbers. Then (S, Γ) is a Γ-semigroup if for $A, B \in S$, $\alpha \in \Gamma$ we define $A\alpha B$ to denote the usual matrix multiplication. Also for $x \in M$, $A, B \in S$, $\alpha, \beta \in \Gamma$, if $x\alpha A$ denotes the usual matrix multiplication then $x\alpha A \in M$ and $(x\alpha A)\beta B = x\alpha(AB)$.

Keeping the above examples in mind we define a right ΓS-act as follows.

DEFINITION: A right ΓS-act is a triple (M, Γ, S), where M is a nonempty set and (S, Γ) is a Γ-semigroup, together with a mapping $(a, \alpha, s) \mapsto a\alpha s$ from $M \times \Gamma \times S$ into M such that $(a\alpha s)\beta t = a\alpha(s\beta t)$ for all $a \in M$, $\alpha, \beta \in \Gamma$, $s, t \in S.$
The examples 1.1, 1.2 and 1.3 are examples of right \(\Gamma \)-\(S \)-act.

DEFINITION
An element \(z \in M \) is called a zero element of the right \(\Gamma \)-\(S \)-act \((M, \Gamma, S)\) if \(z \alpha s = z \) for all \(\alpha \in \Gamma, s \in S \).

Now we give some examples of right \(\Gamma \)-\(S \)-act each of which contains a unique zero element.

EXAMPLE 1.4. Let \(A, B, C \) be three rings, \(S = \text{Hom}(B, C) \), the set of all homomorphisms from \(B \) into \(C \), \(\Gamma = \text{Hom}(C, B) \) and \(M = \text{Hom}(A, C) \). For \(f, g \in S \) and \(\alpha \in \Gamma \) we define \(f \alpha g \) to denote the usual mapping composition then \((S, \Gamma)\) is a \(\Gamma \)-semigroup. If \(x \in M \) and \(x \alpha f \) denotes the usual composition of mappings then \((M, \Gamma, S)\) is a right \(\Gamma \)-\(S \)-act and the zero homomorphism from the ring \(A \) into the ring \(C \) is the unique zero element of \((M, \Gamma, S)\).

EXAMPLE 1.5. In Example 1.2 if we take \(A, B \) to be rings, \(S = \text{Hom}(B, A), \Gamma = \text{Hom}(A, B) \). Then \((A, \Gamma, S)\) is a right \(\Gamma \)-\(S \)-act and \(0_A \), the zero element of the ring \(A \) is the unique zero element of \((A, \Gamma, S)\).

EXAMPLE 1.6. The zero matrix is the unique zero element of the right \(\Gamma \)-\(S \)-act \((M, \Gamma, S)\) of Example 1.3.
Throughout this chapter we denote a right ΓS-act (M, Γ, S) by M. Also we assume that every right ΓS-act M to be considered in this chapter contains a unique zero element z_M and we omit the term right before ΓS-act.

DEFINITION: Let M be a ΓS-act. A nonempty subset B of M is called a ΓS-subact if $B \cap S \subseteq B$.

The subsets $\{z_M\}$ and M of a ΓS-act M are ΓS-subacts of M. These are called trivial ΓS-subacts. All other ΓS-subacts are termed as nontrivial ΓS-subacts.

DEFINITION: Let M be a ΓS-act. An equivalence relation θ on M is a ΓS-congruence if $(a, b) \in \theta$ implies $(a \alpha s, b \alpha s) \in \theta$ for all $a \in \Gamma$ and $s \in S$.

DEFINITION: A ΓS-homomorphism from a ΓS-act M into a ΓS-act M' is a mapping $\theta : M \to M'$ such that $(a \alpha s) \theta = (a \theta)s$ for all $a \in M$, $\alpha \in \Gamma$, $s \in S$. Moreover if θ is one to one and onto, then we call it ΓS-isomorphism.

DEFINITION: A ΓS-act M is called (strictly) cyclic if there exists m in M and α in Γ such that $(M \alpha m) M = M \alpha S \cup \{m\}$. Such an element m is called a (strict) generator of M.
DEFINITION: A right congruence \mathcal{R} on a Γ-semigroup (S, Γ) is called maximal if \mathcal{R} is not the universal relation on S and if \mathcal{T} is a right congruence on (S, Γ) such that $\mathcal{R} \subseteq \mathcal{T}$ then either $\mathcal{R} = \mathcal{T}$ or \mathcal{T} is the universal relation on S.

DEFINITION: A right congruence \mathcal{R} on a Γ-semigroup (S, Γ) is called modular if there exist e in S and a in Γ such that $(eaa, a) \in \mathcal{R}$ for all a in S. e is called left identity modulo \mathcal{R} relative to a.

THEOREM 1.1. Every strictly cyclic ΓS-act is isomorphic to S/\mathcal{R} as ΓS-act for some modular right congruence \mathcal{R} on (S, Γ). Conversely if \mathcal{R} is a modular right congruence on (S, Γ) then S/\mathcal{R} is a strictly cyclic ΓS-act.

PROOF. Let M be a strictly cyclic ΓS-act. Then there is some m in M and a in Γ such that $M = maS$. We define a relation \mathcal{R} on S by $\mathcal{R} = \{(a, b) \in S \times S : ma = mb\}$. Then it is easy to prove that \mathcal{R} is a right congruence on (S, Γ) and S/\mathcal{R} is a ΓS-act, where $S/\mathcal{R} \times \Gamma x S \to S/\mathcal{R}$ is defined by $(s\mathcal{R}, \beta, t) \mapsto (s\beta t)\mathcal{R}$. That is $(s\mathcal{R})\beta t = (s\beta t)\mathcal{R}$. Since $m \in M = maS$, there exists e in S such that $mae = m$. Thus $maea = maa$ for all $a \in S$ which in turn implies that $(eaa, a) \in \mathcal{R}$ for all $a \in S$. Thus e is a left identity modulo \mathcal{R} relative to a. Therefore, S/\mathcal{R} is a strictly cyclic ΓS-act.
to a. Hence φ is modular right congruence. We define a map $\theta : M \to S/\varphi$ by $n\theta = a\varphi$ where $n = maa \in M$. If $n = maa = mab$ then $a\varphi = b\varphi$. So θ is well defined. Let $p \in M$, $\beta \in \Gamma$, $s \in S$ then $p\beta s \in M$. If $p = mat$ for some $t \in S$, then $(p\beta s)\theta = \beta (mat\theta s) = (t\varphi) (\beta s) = (p\theta) \beta s$. Thus θ is a ΓS-homomorphism. Also for $s \varphi \in S/\varphi$, $mas \in M$ and $(mas)\theta = s\varphi$. So θ is onto. Again $p\theta = n\theta$, where $p = maa$ and $n = mab$ for some $a, b \in S$, implies that $a\varphi = b\varphi$, that is $maa = mab$, so that $p = n$. Therefore θ is a ΓS-isomorphism of M onto S/φ.

Conversely let φ be a modular right congruence on (S, Γ) and let e be a left identity modulo φ relative to some $a \in \Gamma$. Then for any a in S $(e \varphi) a a = (e a a) \varphi = a \varphi$. Hence $e \varphi$ is a strict generator of S/φ. Thus S/φ is a strictly cyclic ΓS-act.

DEFINITION : A ΓS-act M is called irreducible if

(i) $M \cap S \neq \{z_M\}$

(ii) M has only trivial ΓS-subacts.

LEMMA 1.2. Every irreducible ΓS-act is strictly cyclic.

PROOF. Let M be an irreducible ΓS-act. If $z_M \neq a \in M$ then $a \cap S \neq \{z_M\}$. If possible let $a \cap S = \{z_M\}$. Let $B = \{b \in M : b \cap S = \{z_M\}\}$. Then B is a ΓS-subact of M. Since
$z_M \not\in a \in B$, $B \not\in \{z_M\}$. Hence $B = M$. Therefore $M \triangleleft S = \{z_M\}$, which is a contradiction. Hence we must have $a \triangleleft S \not\in \{z_M\}$. So there exists $a \in \Gamma$ such that $a \alpha S \not\in \{z_M\}$. But $a \alpha S$ is a ΓS-subact of M. Hence $a \alpha S = M$. Therefore M is strictly cyclic and every nonzero element is its strict generator.

Theorem 1.3. Every irreducible ΓS-act is isomorphic to S/φ as a ΓS-act for some modular congruence φ on S.

Proof. As every irreducible ΓS-act is strictly cyclic the above theorem follows from Theorem 1.1.

Definition. A ΓS-act M is called totally irreducible if

1. $M \triangleleft S \not\in \{z_M\}$.
2. Identity relation and the universal relation are the only ΓS-congruences on M.

It is immediate that every totally irreducible ΓS-act is irreducible.

Theorem 1.4. Every totally irreducible ΓS-act is isomorphic to S/φ as a ΓS-act for some maximal modular right congruence φ on (S, Γ). On the other hand for every such maximal modular right congruence φ on (S, Γ), S/φ is a totally irreducible ΓS-act.
PROOF. Let M be a totally irreducible ΓS-act. Then M is also irreducible, hence strictly cyclic. So $M = a\mathbb{G}S$ for some $a(z_M) \in M$ and $a \in \Gamma$. Consequently M is isomorphic to S/\mathcal{P} where $\mathcal{P} = \{(s, t) \in S \times S : a s = a t\}$ is a modular right congruence on (S, Γ). We now show that \mathcal{P} is maximal. Suppose \mathcal{R} be a right congruence on (S, Γ) which properly contains \mathcal{P}. We define a relation γ on M by $\gamma = \{(b, c) \in M \times M : \text{each element of } b f \text{ is } \mathcal{R}\text{-related to each element of } c f\}$, where f is a ΓS-isomorphism between M and S/\mathcal{P} defined by $m f = t \mathcal{P}$ when $m = a t s$ for some $t \in S$. It is immediate that γ is a ΓS-congruence on M. Since M is totally irreducible, either γ is the identity relation or the universal relation on M. Now $\mathcal{R} \subset \mathcal{R}$, hence there exist $s, t \in S$ such that $s \not\subset t$ but $s \mathcal{R} t$. This shows that $s \mathcal{P} \not= t \mathcal{P}$. Hence $(a s) \mathcal{P} \not= (a t) \mathcal{P}$. This also implies that $a s \not= a t$ in M. But $s \not\subset t$ shows that every element of $(a s) \mathcal{P}$ is \mathcal{R}-related to every element of $(a t) \mathcal{P}$. Hence $a s \gamma a t$. Consequently γ is the universal relation. This implies that \mathcal{R} is the universal relation. Hence \mathcal{P} is maximal. Conversely, suppose that \mathcal{P} is a maximal modular right congruence on (S, Γ). As \mathcal{P} is modular, there exist $e \in S$ and $a \in \Gamma$ such that $(e a s, s) \in \mathcal{P}$ for all $s \in S$. Now $(e \mathcal{P}) a s = (e a s) \mathcal{P} = s \mathcal{P}$ for all s in S. Hence $S/\mathcal{P} \subset S/\mathcal{P} \mathcal{R} S$.
Thus \(S/\rho \Gamma S = S/\rho \neq \) zero, as \(\varnothing \) is not the universal relation.

Now let \(\Upsilon \) be a right \(\Gamma S \)-congruence on \(S/\rho \). Let

\[\Upsilon = \{ (s,t) \in S \times S : \sigma \Upsilon t \in \rho \} \]

Then \(\Upsilon \) is a right congruence on \((S,\Gamma) \) such that \(\Upsilon \) contains \(\varnothing \). Hence either \(\Upsilon = \varnothing \) or \(\Upsilon \) is the universal relation. Thus \(\Upsilon \) is either the identity relation or the universal relation. Consequently \(S/\rho \) is totally irreducible.

2. RADICAL OF \(\Gamma \)-SEMIGROUP

In this section we define annihilator of a \(\Gamma S \)-act and with its help we define radical of a \(\Gamma \)-semigroup. We find that the radical of a \(\Gamma \)-semigroup \((S,\Gamma) \) is the intersection of all \(z\varnothing \) classes (\(z\varnothing \) being the zero element of the \(\Gamma \)-semigroup \((S/\rho,\Gamma) \)) for all maximal modular right congruence \(\varnothing \) on \((S,\Gamma) \). We also define right quasi-regular element, quasi-regular right \(\Gamma \)-ideal and nil right \(\Gamma \)-ideal of a \(\Gamma \)-semigroup \((S,\Gamma) \). We find that the radical of a \(\Gamma \)-semigroup \((S,\Gamma) \) is a quasi-regular \(\Gamma \)-ideal which contains every quasi-regular right \(\Gamma \)-ideal as well as every nil right \(\Gamma \)-ideal of \((S,\Gamma) \). Finally we obtain that a radical of a \(\Gamma \)-ideal of a \(\Gamma \)-semigroup is the intersection of the \(\Gamma \)-ideal with the radical of the \(\Gamma \)-semigroup itself.
DEFINITION: Let M be a ΓS-act. Then annihilator of M denoted by $\text{Ann}_{S}(\Gamma)^{M}$ is defined as

$$\text{Ann}_{S}(\Gamma)^{M} = \{a \in S : M\Gamma a = \{z_{M}\}, \text{ } z_{M} \text{ being the zero element of } M\}.$$

It can be easily shown that if $\text{Ann}_{S}(\Gamma)^{M} \neq \emptyset$ then $\text{Ann}_{S}(\Gamma)^{M}$ is a Γ-ideal of (S, Γ).

DEFINITION: Let (S, Γ) be a Γ-semigroup. Then radical of (S, Γ) denoted by $J_{\Gamma}(S)$ is defined as

$$J_{\Gamma}(S) = \cap \{\text{Ann}_{S}(\Gamma)^{M} : \text{ } M \text{ is totally irreducible } \Gamma S\text{-act}\}.$$

If the Γ-semigroup (S, Γ) has no totally irreducible ΓS-act then $J_{\Gamma}(S) = S$.

THEOREM 2.1. For a Γ-semigroup (S, Γ), $J_{\Gamma}(S) = \cap \{z_{\mathcal{C}} : \mathcal{C} \text{ is a maximal modular right congruence on } (S, \Gamma) \text{ and } z_{\mathcal{C}} \text{ is the zero element of the } \Gamma S\text{-act } S/\mathcal{C}\}$. [If no such \mathcal{C} exists then we assume $\cap \{z_{\mathcal{C}}\} = S$].

PROOF. Let $s \in J_{\Gamma}(S)$, then $M \Gamma s = \{z_{M}\}$ for each totally irreducible ΓS-act of M. Now for each totally irreducible ΓS-act M there exists a maximal modular right-congruence \mathcal{C} on (S, Γ) such that S/\mathcal{C} is isomorphic to M as ΓS-act.

Hence $s \in J_{\Gamma}(S)$ if and only if $S/\mathcal{C} \Gamma s = \{z_{\mathcal{C}}\}$ where $z_{\mathcal{C}}$ is
the zero element of \(S/\rho \), for each maximal modular congruence \(\rho \) on \((S, \Gamma)\). This implies that \((t \rho)S = (t \alpha S) \rho = z \rho \) for each \(t \rho \in S/\rho \), \(\alpha \in \Gamma \). Since \(\rho \) is a modular right congruence there exist \(e \in S \) and \(\alpha \in \Gamma \) such that \((e \alpha s_1, s_1) \in \rho \) for all \(s_1 \in S \). Hence \(z \rho = (e \rho)S = (e \alpha S) \rho = s \rho \). From this it follows that \(s \in z \rho \) for all maximal modular right congruence \(\rho \) on \((S, \Gamma)\). Consequently \(J_\Gamma(S) \subseteq \{ z \rho : \rho \) is a maximal modular right congruence on \((S, \Gamma)\} \). Next let us suppose \(s \in \cap \{ z \rho : \rho \) is a maximal modular right congruence on \((S, \Gamma)\} \). If possible let \(M \) be a totally irreducible \(\Gamma S\)-act such that \(M \cap S \neq \{ z_M \} \). Hence there exist \(m \in M \), \(\alpha_1 \in \Gamma \) such that \(m \alpha_1 S \neq z_M \). Then \((m \alpha_1 s) \Gamma S = M \). Hence there exist \(q \in S \) and \(\beta \in \Gamma \) such that \(m \alpha_1 s \beta q = m \). We define a relation \(\tau \) on \(S \) by \(\tau = \{(s_1, t_1) \in S \times S : m \alpha_1 s_1 = m \alpha_1 t_1 \} \). It can be shown that \(\tau \) is a right congruence on \((S, \Gamma)\), \(\tau \) is not the universal relation and \(s \beta q \) is a left identity modulo \(\tau \) relative to \(\alpha_1 \). Now \(m \alpha_1 S \cap S = M \) implies that \(m \alpha_1 S = M \). Then for each \(m_1 \in M \) there exists an element \(t \in S \) such that \(m_1 \alpha_1 t = m_1 \). We define a mapping \(\theta : M \to S/\tau \) by \(m_1 \theta = t \tau \). It can be shown that \(\theta \) is a \(\Gamma S\)-isomorphism. Now \(S/\tau \) is a totally irreducible \(\Gamma S\)-act with zero element \(z_M \). Since \(s \beta q \) is a left identity modulo \(\tau \) relative to \(\alpha_1 \) we have \((s \beta q) \tau \cap S = \).
But $s \in z \tau$, implies that $s \tau$ is the zero element of S/τ. So $(s \tau)zq = s \tau$ that is $(s \beta q)\tau = s \tau = \text{zero element of } S/\tau$. So $s \beta q \in z_M \theta$. Therefore $S/\tau = (s \beta q)\tau \cap S = (z_M \theta)\tau \cap S = \{ z_M \theta \}$ which contradicts the fact that τ is not the universal relation. Therefore $mas = z_M$ for each m in M and each a in Γ. Hence $M \cap S = \{ z_M \}$. Thus $s \in J_\tau (S)$.

Therefore $\cap \{ z \beta : \beta \text{ is a maximal modular right congruence on } (S, \Gamma) \} \subseteq J_\tau (S)$. Consequently we have $J_\tau (S) = \cap \{ z \beta : \beta \text{ is a maximal modular right congruence on } (S, \Gamma) \}$.

DEFINITION: An element $e \in S$ of a Γ-semigroup (S, Γ) is called right quasi-regular if there does not exist a maximal modular right congruence β on (S, Γ) such that e is a left identity modulo β relative to any $a \in \Gamma$.

DEFINITION: A right Γ-ideal of a Γ-semigroup (S, Γ) is called quasi-regular if each element contained in it is a right quasi-regular element of (S, Γ).

THEOREM 2.2: In a Γ-semigroup (S, Γ) the radical $J_\Gamma (S)$ is a quasi-regular Γ-ideal which contains every quasi-regular right Γ-ideal of (S, Γ).

PROOF: Let n be any element of $J_\Gamma (S)$, s be in S and a be
If M is a totally irreducible ΓS-act, then $M \Gamma (\text{son}) = (M \Gamma \text{s}) \text{an} \leq M \text{an} = \{z_M\}$, where z_M is the zero element of M. Also $M \Gamma (\text{nas}) = (M \Gamma \text{n}) \text{as} = \{z_M \text{as}\} = \{z_M\}$. Thus $J_\Gamma (S)$ is a Γ-ideal of (S, Γ). Suppose that e belongs to $J_\Gamma (S)$ and f is a maximal modular right congruence on (S, Γ) such that e is a left identity modulo f relative to some $\alpha \in \Gamma$. Now e is contained in the zero of S/f, which contradicts the fact that f is not the universal relation. Therefore $J_\Gamma (S)$ is quasi-regular. Suppose that T is a quasi-regular right Γ-ideal of (S, Γ), t belongs to T and M is a totally irreducible ΓS-act such that $M \Gamma t \neq \{z_M\}$. So there exist m in M and s in Γ such that $m \alpha t \neq z_M$. Thus $(m \alpha t) \Gamma S = M$. Hence there exist s in S and β in Γ such that $m \alpha t \beta s = M$. We now define a relation γ on S by $\gamma = \{(u, v) \in S \times S : m \alpha u = m \alpha v\}$. It is immediate that γ is a right congruence on (S, Γ) and M is isomorphic to S/γ as ΓS-act under the isomorphism $\theta : M \rightarrow S/\gamma$ defined by $m_1 \theta = r_\gamma$ where $m_1 = m \alpha r$ for some $r \in S$. Therefore S/γ is a totally irreducible ΓS-act, consequently γ is maximal. Also $(t \beta s)$ is a left identity modulo γ relative to α. Thus $(t \beta s)$ is not right quasi-regular element of (S, Γ), which is a contradiction. Therefore if M is a totally irreducible ΓS-act then $M \Gamma t = \{z_M\}$.
Thus \(t \) is in \(\mathbb{J}_P(S) \). So \(\mathbb{J}_P(S) \) contains every quasi-regular right \(\Gamma \)-ideal of \((S, \Gamma) \).

DEFINITION: Let \(o \) be the zero element of the \(\Gamma \)-semigroup \((S, \Gamma) \). Then an element \(s \) in \(S \) is called nilpotent if for each \(a \) in \(\Gamma \) there is a positive integer \(n \) such that \((sa)^n s = o \).

DEFINITION: A right \(\Gamma \)-ideal of a \(\Gamma \)-semigroup \((S, \Gamma) \) is called nil if each of its element is nilpotent.

THEOREM 2.3: If \(s \) is a nilpotent element of a \(\Gamma \)-semigroup \((S, \Gamma) \) then \(s \) is a right quasi-regular element of \((S, \Gamma) \).

PROOF. Suppose that \(s \) is nilpotent but not right-quasi regular element of \(S \). Let \(\mathcal{F} \) be a maximal modular right congruence on \((S, \Gamma) \) such that \(s \) is a left identity modulo \(\mathcal{F} \) relative to some \(a \in \Gamma \). For each positive integer \(n \), \((sa)^n s, s \) \(\in \mathcal{F} \). Hence \((s, o) \in \mathcal{F} \). Since \(s \) is a left identity modulo \(\mathcal{F} \) relative to \(a \), it follows that \((t, o) \in \mathcal{F} \) for all \(t \in S \), which contradicts the fact that \(\mathcal{F} \) is not the universal relation. Therefore \(s \) is a right quasi-regular element of \((S, \Gamma) \).

COROLLARY 2.4: In a \(\Gamma \)-semigroup \((S, \Gamma) \) the radical \(\mathbb{J}_P(S) \) contains each nil right \(\Gamma \)-ideal of \((S, \Gamma) \).
THEOREM 2.5. If T is a Γ-ideal of (S, Γ) and t belongs to T then t is a right quasi-regular element of (S, Γ) if and only if t is a right quasi-regular element of (T, Γ).

Proof. Let \mathcal{P} be a maximal modular right congruence on (T, Γ) and t be a left identity modulo \mathcal{P} relative to some $a \in \Gamma$.

We now define a relation γ on S by

$$\gamma = \{(r,s) \in S \times S : (t \alpha r \beta p, t \alpha s \beta p) \in \mathcal{P} \text{ for all } p \in S \text{ and } \beta \in \Gamma\}.$$

It is immediate that γ is a right congruence on (S, Γ) and t is a left identity modulo γ relative to a. Let $z_{\mathcal{P}}$ be the zero element of T/\mathcal{P}. If γ is universal then $(t,z) \in \gamma$. So $(t \alpha r \beta p, t \alpha z \beta p) \in \mathcal{P}$ or $(t \alpha p, z \alpha p) \in \mathcal{P}$ or $(p, z \alpha p) \in \mathcal{P}$. Thus $p \mathcal{P} = (z \alpha p) \mathcal{P} = (z \mathcal{P}) \alpha p = z \mathcal{P}$. Therefore $(p,z) \in \mathcal{P}$ for all $p \in T$. So \mathcal{P} is universal which is a contradiction. Hence γ is not universal relation.

Let \mathcal{P} be a maximal right congruence on (S, Γ) containing γ then t is a left identity modulo \mathcal{P} relative to a. So t is not a right quasi-regular element of (S, Γ). Therefore each element of T which is right quasi-regular element of (S, Γ) is a right quasi-regular element of (T, Γ). Conversely suppose that \mathcal{P} is a maximal modular right congruence on (S, Γ) and t is a left identity modulo \mathcal{P} relative to some $a \in \Gamma$. If r,s are any two elements of T, let $(r,s) \in \gamma$ if and
only if \((r, s) \in \varrho\). Then \(\Upsilon\) is a right congruence on \(T\) with \(t\) as a left identity modulo \(\Upsilon\) relative to \(a\) in \(\Gamma\). Also \(\Upsilon\) is not universal relation. Let \(\Upsilon\) be a maximal right congruence on \((T, \Gamma)\) which contains \(\Upsilon\), then \(t\) is a left identity modulo \(\Upsilon\) relative to \(a\). Hence each element of \(T\) which is right quasi-regular element of \((T, \Gamma)\) is also a right quasi-regular element of \((S, \Gamma)\).

Lemma 2.6. If \((S, \Gamma)\) and \((T, \Gamma')\) are two \(\Gamma\)-semigroups and \((\theta, \phi)\) be a homomorphism from \((S, \Gamma)\) onto \((T, \Gamma')\) then
\[
[J_{\Gamma}(S)]_{\theta} \subseteq J_{\Gamma'}(T).
\]

Proof. Suppose that \(r \in J_{\Gamma}(S)\) and \(r\theta\) is not a right quasi-regular element of \(T\). Let \(\varrho\) be a maximal modular right congruence on \((T, \Gamma')\) such that \(r\theta\) is a left identity modulo \(\varrho\) relative to some \(a'\) in \(\Gamma'\). We now define
\[
\Upsilon = \{(s, p) \in S \times S : s\theta \varrho p \theta\}. \quad \text{Then} \quad \Upsilon \quad \text{is a right congruence on} \quad (S, \Gamma), \quad \text{which is not universal.} \quad \text{Now if} \quad s \in S \quad \text{and} \quad a \in \phi^{-1}(a') \quad \text{then} \quad (r \alpha s) \theta = (r \theta) (a \phi) (s \theta) = (r \theta) a' (s \theta). \quad \text{But} \quad (r \theta a' s \theta, s \theta) \in \varrho. \quad \text{That is} \quad ((r \alpha s) \theta, s \theta) \in \varrho. \quad \text{Thus} \quad (r \alpha s, s) \in \Upsilon \quad \text{for all} \quad s \in S \quad \text{so that} \quad r \quad \text{is a left identity modulo} \quad \Upsilon \quad \text{relative to} \quad a. \quad \text{Let} \quad \Upsilon' \quad \text{be a maximal modular right congruence on} \quad (S, \Gamma) \quad \text{which contains} \quad \Upsilon. \quad \text{Then} \quad r \quad \text{is also left identity modulo} \quad \Upsilon' \quad \text{relative to} \quad a.
This is a contradiction to the fact that $J_{\Gamma}(S)$ is a quasi-regular Γ-ideal. Thus if r belongs to $J_{\Gamma}(S)$ then $r\theta$ is a right quasi-regular element of (T, Γ'). Thus $\{r\theta\} \cup (r\theta)\Gamma' T$ is a quasi-regular right Γ-ideal of (T, Γ') and so $\{r\theta\} \cup (r\theta)\Gamma' T \subseteq J_{\Gamma}(T)$. Therefore $[J_{\Gamma}(S)] \theta \subseteq J_{\Gamma}(T)$.

NOTE: Let (S, Γ, μ) be a Γ-semigroup and I be a Γ-ideal of (S, Γ, μ). Let $S/I = \{I, x : x \in S - I\}$.

Now $(S/I, \Gamma, \mu')$ is a Γ-semigroup if we define

$$(x, a, y)\mu' = \begin{cases} (x, a, y)\mu & \text{if } (x, a, y)\mu \in S - I \\ I & \text{otherwise} \end{cases}$$

and $(I, a, I)\mu' = (I, a, y)\mu' = (x, a, I)\mu' = I$ for all $x, y \in S - I$ and $a \in \Gamma$. We denote this Γ-semigroup simply by $(S/I, \Gamma)$ or (\tilde{S}, Γ). Also if (M, Γ, S) is a ΓS-act then we define a mapping $(M, \Gamma, \tilde{S}) \rightarrow M$ by $(m, a, \tilde{s}) \rightarrow m \tilde{s} = \begin{cases} m \tilde{s} & \text{if } s \notin I \\ z_{M} & \text{if } s = I \end{cases}$

Then it is easy to see that (M, Γ, \tilde{S}) is a ΓS-act.

THEOREM 2.7. If T is a Γ-ideal of a Γ-semigroup (S, Γ) then $J_{\Gamma}(T) = J_{\Gamma}(S) \cap T$.

PROOF. It is immediate that $J_{\Gamma}[S/J_{\Gamma}(S)]$ is zero. Because every totally irreducible ΓS-act is a totally irreducible $\Gamma S/J_{\Gamma}(S)$-act and conversely. Let $Q = (T \cup J_{\Gamma}(S))/J_{\Gamma}(S)$.

Since \([J_p(Q) \cap Q \subseteq J_p(Q)],\) by Theorem 2.2 and 2.5 each element of \([J_p(Q) \cap Q \subseteq J_p(Q)],\) is a right quasi-regular element of \((Q, \Gamma)\) and of \((S \cap J_p(S), \Gamma)\). Thus \(J_p(Q) \cap Q \subseteq J_p[S \cap J_p(S)] = \text{zero.}\)

Let \(P = \{p : p \text{ is an element of } TyJ_p(S) \text{ such that } P/J_p(S) \subseteq J_p(Q)\}.\) Since \(P/J_p(S) \subseteq J_p(Q)\), \(P/J_p(S) = \text{zero}\), by Corollary 2.4. \(P/J_p(S) \subseteq J_p(Q)\). Thus \(J_p(Q) = P/J_p(S)\). If \(R = \{r : r \in S \text{ such that } [r/J_p(S)] \cap Q = \text{zero}\},\) then \(R/J_p(S)\) is a \(\Gamma\)-ideal of \((S/J_p(S), \Gamma)\) and \(J_p(Q) = [R/J_p(S)] \cap Q\). Thus \(J_p(Q)\) is a \(\Gamma\)-ideal of \((S/J_p(S), \Gamma)\). Hence \(J_p(Q)\) is a quasi-regular \(\Gamma\)-ideal of \((S/J_p(S), \Gamma)\). Hence \(J_p(Q)\) is zero. Let \((\theta, I)\) be the natural homomorphism from \((T \cup J_p(S), \Gamma)\) onto \((Q, \Gamma)\), defined by \(t\theta = t/J_p(S)\) for all \(t \in T \cup J_p(S)\) and \(I\) is the identity mapping on \(\Gamma\). Then by Lemma 2.6 \(J_p(T \cup J_p(S)) \subseteq J_p(Q) = J_p(S)/J_p(S)\) and thus \(J_p(T \cup J_p(S)) \subseteq J_p(S)\). By Theorem 2.2 and 2.5 \(J_p(T)\) is a quasi-regular \(\Gamma\)-ideal of \((T \cup J_p(S), \Gamma)\). Hence \(J_p(T) \subseteq J_p(T \cup J_p(S)) \subseteq J_p(S)\). Therefore \(J_p(T) \subseteq J_p(S) \cap T\) \(\cdots \cdots \cdots (A)\).

Since \(J_p(S) \cap T\) is a \(\Gamma\)-ideal of \((S, \Gamma)\) each element of \(J_p(S) \cap T\) is a right quasi-regular element of \((J_p(S) \cap T, \Gamma)\). Thus \(J_p(S) \cap T \subseteq J_p[(J_p(S) \cap T)]\). Since \(J_p(S) \cap T\) is a \(\Gamma\)-ideal of the \(\Gamma\)-semigroup \((T, \Gamma)\), we have by \((A)\) \(J_p[(J_p(S) \cap T)] \subseteq J_p(T) \cap [J_p(S) \cap T]\).
Therefore $J_p(S) \cap T = J_p(T)$.

This completes the proof of the theorem.