LIST OF TABLES

Table 1.1: Annual global vaccine preventable deaths (WHO Report, 1999).

Table 2.1: Classes of immunological adjuvants.

Table 2.2: Various process variables involved in multiple emulsion solvent evaporation method affecting microparticle characteristics.

Table 2.3: Effect of different formulation parameters on encapsulation efficiency and particle size.

Table 2.4: Examples of some therapeutic proteins/peptides microencapsulated in biodegradable PLA/PLGA microparticles.

Table 2.5: List of FDA approved drug delivery products using PLA/PLGA polymers.

Table 2.6: Applications of PLGA/PLA microparticles in vaccine delivery.

Table 3.1: Composition of IAP and EAP in different formulations.

Table 3.2: Different variables employed for preparation different size ranges of PLA microparticles.

Table 3.3: Immunization with PLA particles prepared with different excipients in IAP and EAP.

Table 4.1: Encapsulation efficiency of TT in different formulations with different excipient combinations in IAP and EAP.
Table 4.2: Preparation and Characterization of different sized TT entrapped PLA particles.

Table 4.3: Characteristics of microparticles with different TT loadings.

Table 4.4: Serum anti TT IgG concentrations elicited following immunization with single dose of microparticle entrapped TT (MPTT) co administered with alum and two divided doses of alum adsorbed TT at different doses regimens.

Table 4.5: Different antibody isotypes elicited in rats on different days following immunization with admixture of particle and alum and two divided doses of alum adsorbed antigen.

Table 4.6: Primary and secondary anti-TT IgG response in rats following immunization with different immunization protocols.

Table 4.7 Different antibody isotypes in rat serum immunized with two doses (5 Lf each) of alum adsorbed TT and single dose (10 Lf) microencapsulated TT co administered with alum.