CONTENTS

1. INTRODUCTION AND OBJECTIVES 1-10
   1.1 Introduction
   1.2 Objectives

2. REVIEW OF LITERATURE 11-35
   2.1 Adjuvants and controlled release antigen delivery systems
   2.2 Poly lactide and poly lactide-co-glycolide polymers
     2.2.1 Degradation of PLA and PLGA polymer
   2.3 Formulation of biodegradable polymer particles
     2.3.1 Water-in-Oil -in -Water multiple emulsion method
     2.3.2 Antigen stability during polymer particles formulation
   2.4 Applications of biodegradable microparticles for proteins and antigen delivery
     2.4.1 Protein/peptide delivery
     2.4.2 Controlled antigen or vaccine delivery systems
     2.4.3 Adjuvanticity of PLA/PLGA microspheres
     2.4.4 Modification of PLGA/PLA polymer for vaccine delivery
   2.5 Applications of PLA/PLGA microparticles for development of single dose TT vaccine

3. MATERIAL AND METHODS 36-46
   3.1 Materials
   3.2 Methods
     3.2.1 Preparation of TT loaded Poly (DL) lactide microparticles
3.2.2 Preparation of microparticles with different sizes
3.2.3 Preparation of microparticles with different TT loads
3.2.4 Characterization of particle size and surface morphology
3.2.5 Estimation of protein content of polymer particles
3.2.6 Adsorption of TT on alum
3.2.7 *In-vitro* release studies of polymer entrapped TT
3.2.8 Protein Estimation by micro BCA assay
3.2.9 Purification of anti-TT antibody
3.2.10 Estimation of TT released from microparticles by ELISA

3.3 *In vivo* studies

3.3.1 Immunization with particles having different excipients in IAP and EAP
3.3.2 Immunization with microparticles having different size ranges
3.3.3 Immunization with microparticles having different TT load
3.3.4 Immunization with different doses of microencapsulated TT
3.3.5 Evaluation of memory response
3.3.6 ELISA protocol
3.3.7 Comparison of antibody affinity
3.3.8 Comparison of antibody isotypes
3.3.9 Statistical analysis

4. RESULTS AND DISCUSSION

4.1 Microparticle formulation and preliminary results
4.2 Formulation and evaluation of TT entrapped PLA particles with different excipients.
4.2.1 Effect of excipients on encapsulation efficiency and surface morphology of polymer particles

4.2.2 *In vitro* release of TT from polymer particles prepared with different excipients

4.2.3 Immune response from polymer particles having different excipients

4.2.3.1 *Effect of protein concentration on immune response*

4.2.3.2 *Effect of sucrose and NaHCO₃ on immune response*

4.2.4 Correlation between *in vitro* release of antigen and *in vivo* immune responses from different formulations

4.2.5 Immune responses from admixture of alum and antigen loaded polymer particles

4.2.6 Conclusions from formulation experiments

4.3 Effect of formulation variables on the immune response from TT entrapped PLA particles

4.3.1 Effect of particle size on immune response

4.3.1.1 *Preparation and characterization of TT loaded PLA particles*

4.3.1.2 *Antibody response from different sized PLA particles*

4.3.1.3 *Effect of co-administration of alum on antibody response from different sized PLA particles*

4.3.2 Effect of antigen load on immune response

4.3.3 Dose response studies using TT entrapped PLA particles

4.3.4 Comparative antibody response from single doses of alum adsorbed antigen and admixture of microencapsulated TT and alum

4.3.5 Conclusions from formulation parameters experiments

4.4 Efficacy of single dose polymeric vaccine formulation for TT

4.4.1 Comparison of immune response from single dose polymer entrapped TT with two divided doses of alum adsorbed TT

4.4.2 Determination of antibody affinity and antibody isotyping in different groups
4.4.3 Conclusions

4.5 Memory antibody response responses from immunization with single doses of polymer entrapped TT

4.5.1 Memory response from PLA entrapped TT particles having different excipients both in internal and external aqueous phase

4.5.2 Effect of microparticle size on memory responses from PLA entrapped TT particles

4.5.3 Memory response from immunization with PLA particles having different antigen load

4.5.4 Effect of antigen doses on memory response from immunization with TT entrapped polymer particles

4.5.5 Comparative memory response from single dose of microencapsulated TT with that of two divided doses of alum adsorbed TT

4.5.6 Antibody affinity and antibody isotyping studies

4.5.7 Conclusions on memory response from polymer particle entrapped TT immunization

5. SUMMAR 82-85

6. BIBLIOGRAPHY 86-107