<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
</table>
[8] BROYDEN, C. G

[10] CONN, A. R., SCHEINBERG, K., and TOINT, PH. L

[13] DANTZIG, G. B

DANTZIG, G. B
Linear Programming and Extensions.
Princeton University press,
Princeton, 1953.

DAVID M. GAY
Some convergence properties
of Broyden's method, SIAM J.
Numerical Analysis, Vol. 16, No. 4,

DELEONE, R.,
GAUSDISO, M., and
GRIppo, L
Stopping criteria for line search
methods without derivatives,
Mathematical Programming, Vol. 30,

DENNIS, J.E., and
TORCZON, V.
Direct search methods on parallel
machines SIAM Journal on
Optimization Vol. 1, No. 4,

DINES, J. E., and
MORE, J. J
A characterization of superlinear
convergences and its application,
Mathematics of computation,
Vol. 28, No. 126, pp. 549-560, 1974

DIXON, L.C.W., and
PRICE, R. C
Numerical experiments with truncated
Newton method for unconstrained
optimization, Journal of Optimization
Theory and Applications, Vol. 56,

FAN, L. T.,
ERIVKSON, L. E., and
WANu, C. L
Methods of Optimization, Institute
f systems Design and
Optimization, Kansas State
University, Manhattan, KS, 1980.

<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Fox, R. L</td>
<td>Optimization Methods for Engineering dsu'ii. Addison Wesley Reading. USA. 197 i.</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Reference</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>36</td>
<td>GUPTA, S. P</td>
<td>Statistical Methods, Sultan and Sons, New Delhi, 1992.</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
<td>Reference</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>#</td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>46</td>
<td>KANNIAPPAN, P., and THANUAVH, K</td>
<td>Unidimensional Search Schemes Using Identric Mean for Optimization Problems</td>
</tr>
<tr>
<td>47</td>
<td>KANNIAPPAN, P., and THANGAVEL, K</td>
<td>Efficient Unidimensional Direct Search Schemes for Optimization Problems</td>
</tr>
</tbody>
</table>
KOHEER, D. A

Projections of Convex Polyhedral sets, Operational Research (enter Report, ORC >7–7<), University of California, Berkeley, 1907.

IvUESTER, J. 1...,' and MiziU. IS

KuiiiN, H. W., and TUCKER, A. W

Non-linear Programming, in proceedings of Second Berkeley Symposium (University of California, Berkeley pp. 481...P2, 1951.

LARRY NAZARETH

55] LASALLE, J. P., and LEFSCHETZ, S

56] L-ssEZ, J. L., and MMIER, M. J

57] LHIMANN, G

[58] LUCIA, A., and Xu, J

[59] LJENBERGER, D. G

[60] Luus, R., and JAKKOLA, T. H

[61] MATTHEWS, A., and DAVIHS, D

[62] MOHAN, C, and KLJ SUM S HANKER

[63] MORE, J.J., GARBOW, B. S., and HILLSTROM, K. E

[64] MOIZKIN, T. S
Beitrage zur Theorie der linearen Ungleichungen, Dissertation Universitat Zurich, 1936.
1) NESL, J. A., and VOAO, A

6] ORTEGA, J. M

7] PAPADRAKAKIS, M., and PANTAZOPOULOS

68] PHILIPS, D.T., RAVINDRAN, A., and SOLBERG, J.J

Operations Research, Wiley, 1975

[69] POLAK, E

[70] POWELL, M. J. D

[71] POWELL, M. J. D

72] RAO. M. V. C, and CHANDRA, K. S

[73] RAO. M. V. C, and CHANDRA, K. S

[74] RAO. M. V. C, and SUBBARAJ. P

[75] RAO. M. V. C, and SUBBARAJ. P

[76] RENATO DE LEONE., MANLIO GAUDIOSO., and LUIGI GRIPPO

[77] ROBINSON, S. M

SPENDLEY, W, HUNT, G. R., and HIMSWORTH, F. R.

STEPHEN, G. NASH and ARIEILA

SUDBARAJ, P

1] TABAK, D., and ICuo, B

2] TAHA, H. A

9] TOINT, P. L

00] TORCZON, V., Gon, B. S., and TEO, K. L

Sequential application of simplex designs in optimization and evolutionary operation, Technometrics, 4, 1962.

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
</table>
LIST or puiuc-maxs ovr or mis TIIFSIS

tridimensional direct search scheme using identrie mean for optimization problems, Opsearch (communicated*).

Efficient unidimensional direct search schemes for optimization problems, Opsearch (accepted for publication).

Performance of the unidimensional search algorithms in quadratically convergent algorithms, Applied Mathematics and Computation (communicated).

Accelerated pattern search algorithm for solving unconstrained optimization problems, Computers and Mathematics with Applications (communicated).