Chapter - 6

ON UNIFORM MATRIX SUMMABILITY OF A FOURIER SERIES
ON UNIFORM MATRIX SUMMABILITY OF A FOURIER SERIES

6.1 Let \(\{p_n\} \) be a sequence of numbers such that

\[
p_n = p_0 + p_1 + \ldots + p_n; (P_{-1} = p_{-1} = 0)
\]

Let \(f \in L(-\pi, \pi) \) and be periodic with period \(2\pi \) and

\[
(6.1.1.) \quad \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)
\]

be the Fourier series of the function \(f \). We shall use following notations.

\[
\phi(t) = \phi(x, t) = f(x + t) + f(x - t) - 2S,
\]

\(s \) being constant.

\[
\Phi(t) = \int_{-t}^{t} |\phi(u)| du
\]

\[
A_{n, \tau} = \sum_{k=0}^{\tau} a_{n,n-k} \text{ where } \tau = \text{Integral part of } \frac{1}{t} = \left[\frac{1}{t} \right]
\]

\[
M_n = \frac{1}{2\pi} \sum_{k=0}^{n} a_{n,n-k} \frac{\sin \left(\frac{n-k+1}{2} \right) t}{\sin(t/2)}
\]

6.2 Let \(T = (a_{n,k}) \) be an infinite triangular matrix satisfying the Silverman-Toeplitz \[1913\] condition of regularity, i.e.

\[
\sum_{k=0}^{n} a_{n,k} \rightarrow 1, \quad \text{as } n \rightarrow \infty
\]
\[a_{nk} = 0 \text{ for } k > n \]

and

\[
\sum_{k=0}^{n} |a_{nk}| \leq m, \text{ a finite constant}
\]

Let

\[
\sum_{m=0}^{\infty} u_m(x) \text{ be an finite series}
\]

such that

\[
U_k(x) = u_0(x) + u_1(x) + \cdots + u_k(x)
\]

If there exists a function \(U = U(x) \) such that

\[
t_n(x) = \sum_{k=0}^{n} a_{nk} \{ U_k(x) - U \}
\]

\[
= \sum_{k=0}^{n} a_{n,n-k} \{ U_{n,n-k}(x) - U \}
\]

\[= o(1), \text{ as } n \to \infty \]

uniformly in a set \(E \) in which \(U = U(x) \) is bounded, then we say that the series

\[
\sum u_m(x)
\]

is summable (T) uniformly in set \(E \) to the sum \(U \).

6.3 Siddiqi [55] proved the following theorem:

Theorem A. If

\[
(6.3.1) \quad \Phi(t) = \int_{0}^{t} |\phi(u)| du = o\left(\frac{t}{\log 1/t}\right), \text{ as } t \to +0
\]

then the Fourier series (6.1.1), at \(t=x \) is summable harmonic 1.7 to \(f(x) \).

Dealing with topics in this group, in 1961 Pati [39] has generalized the above Theorem A for the Nörlund summability of a Fourier series in the following form;
Theorem B.

If \((N,p_n)\) be a regular Nörlund method defined by a real non-negative, monotonic, non-increasing sequence of coefficients \(\{p_n\}\) such that

\[
P_n = \sum_{v=0}^{n} p_v \to \infty, \text{ as } n \to \infty
\]

and

\[
(6.3.2) \quad \log n = O(p_n), \text{ as } n \to \infty
\]

Then if,

\[
\Phi(t) = \int_{0}^{t} |\phi(u)|\,du = o\left(\frac{t}{P_t}\right), \text{ as } t \to +0
\]

the Fourier series (6.1.1) is summable \((N,p_n)\) to \(f(x)\) at the point \(x\).

We in this chapter, have improved and extended the above result under very general conditions by establishing the following:

Theorem. Let \((a_{nk})\) be an infinite triangular matrix such that the elements \((a_{nk})\) are non-negative, and non-decreasing with \(k\) and if

\[
(6.3.3) \quad \Phi(t) = \int_{0}^{t} |\phi(u)|\,du = o\left(\frac{1}{t} \frac{1}{P_t}\right), \text{ as } t \to +0
\]

uniformly in a set \(E\), where \(\in (t)\) is a positive function of \(t\) such that

(i) \(P_n \to \infty, \text{ as } n \to \infty\)

(ii) \(\in (n) \log n = O(p_n), \text{ as } n \to \infty\)

Then the Fourier series (6.1.1) is summable \((T)\) uniformly in \(E\) to the sum \(f(x)\).
6.4 We shall require following lemmas for the proof of our theorem.

Lemma (4.1) For \(0 < t < \frac{1}{n}\) and under the condition of our theorem on \((a_{nk})\),
\[M_n(t) = O(n) \]

Proof of Lemma:
\[
M_n(t) = \frac{1}{2\pi} \sum_{k=0}^{n} a_{n,n-k} \frac{\sin\left(n - k + \frac{1}{2}\right) t}{\sin(t/2)}
\]
\[
= \frac{1}{2\pi} \sum_{k=0}^{n} a_{n,n-k} (2n-2k+1) \left| \sin\left(\frac{t}{2}\right) \right|
\]
\[
= O(2n+1) \sum_{k=0}^{n} |a_{n,n-k}|
\]
\[
= O(2n+1)|A_{n,n}|
\]
\[
= O(n) O(1)
\]
(6.4.1)
\[= O(n) \]

Lemma (4.2) (Mc Fadden[33]). If \(\{p_n\}\) be a non-negative, non-increasing sequence, then for \(0 \leq t \leq \pi\), \(0 \leq a \leq b \leq \infty\) and any \(n\),
\[
(6.4.2) \quad \sum_{k=a}^{b} p_k e^{i(n-k)} = O(p_r)
\]

Lemma (4.3): For \(\frac{1}{n} < t \leq \delta < \pi\),
\[
M_n(t) = O\left(\frac{A_{n,t}}{t}\right)
\]
Proof of Lemma.

Since for \(\frac{1}{n} < t \leq \delta < \pi, \sin \left(\frac{t}{2} \right) < t. \)

Therefore,

\[
M_n(t) = \left| \frac{1}{2\pi} \sum_{k=0}^{n} a_{n,n-k} \frac{\sin \left(\frac{n-k+1}{2} \right) t}{\sin \left(\frac{t}{2} \right)} \right|
\]

\[
= O \left(\frac{1}{t} \right)^{\text{Imaginary part of } \left| \sum_{k=0}^{n} a_{n,n-k} e^{(n-k+1)\pi^2}} \right)
\]

\[
= O \left(\frac{1}{t} \right)^{\sum_{k=0}^{n} a_{n,n-k} e^{(n-k+1)\pi^2}}
\]

\[
= O \left(\frac{A_{n,t}}{t} \right) \text{ by lemma (6.4.2)}
\]

which proves the lemma.

6.5 PROOF OF THE THEOREM:

Following Titchmarsh ([57]); p. 403) we have

\[
S_n(x) - f(x) = \frac{1}{2\pi} \int_0^\delta \phi(t) \frac{\sin \left(\frac{k+1}{2} \right) t}{\sin \left(\frac{t}{2} \right)} dt + o(1)
\]

uniformly in E

Then

\[
t_n(x) = \sum_{k=0}^{n} a_{n,n-k} \{S_{n-k}(x) - f(x)\}
\]
\[
= \frac{1}{2\pi} \int_0^\infty \left(\sum_{k=0}^{n} a_{n,n-k} \frac{\sin \left(\frac{n-k+\frac{1}{2}}{2} t \right)}{\sin \left(\frac{t}{2} \right)} \right) \phi(t) dt + o(1)
\]

\[
= \left(\int_0^1 + \int_1^{\delta} \right) M_n(t) \phi(t) + o(1) \quad \text{uniformly in } E.
\]

6.5.1

\[
= I_1 + I_2 + o(1) \quad \text{uniformly in } E.
\]

Now

\[
I_1 = \int_0^1 \phi(t) M_n(t) dt \quad \text{uniformly in } E
\]

\[
|I_1| \leq \int_0^1 |\phi(t)||M_n(t)| dt \quad \text{uniformly in } E
\]

\[
|I_1| = O(n) \int_0^1 \phi(t) dt \quad \text{uniformly in } E \text{ by lemma (6.4.1)}
\]

\[
= O(n) \alpha \left(\frac{\epsilon(n)}{nP_n} \right), \quad \text{by (6.3.3)}
\]

\[
= o \left(\frac{\epsilon(n)}{P_n} \right)
\]

(6.5.2)

\[
= o(1), \quad \text{as } n \to \infty
\]

\[
|I_2| = O(1) \int_1^{\delta} |\phi(t)| \frac{A_{n,\tau}}{t} dt
\]

\[
= \left\{ \frac{A_{n,\tau}}{t} \phi(t) \right\} \frac{\delta}{1} + \int_1^{\delta} \frac{A_{n,\tau}}{t^2} \phi(t) dt + \int_1^{\delta} \frac{\phi(t)}{t} d(A_{n,\tau})
\]

\[
= o \left(\frac{\epsilon(1)}{P_1} \right) + \int_1^{\delta} \frac{A_{n,\tau}}{t^2} \phi(t) dt + \int_1^{\delta} \frac{A_{n,\tau}}{t} \phi(t) dt
\]
\[
\begin{align*}
&= \frac{A_{n/\delta} \in \left(\frac{1}{\delta}\right)}{P_\delta} + \frac{A_{n,n} \in (n)}{P_n} \sum_{k=1}^{n} \frac{A_{n,u} \in (u)}{uP_u} du + \int_{1/\delta}^1 a_{n-y} \in (y) \ dy \\
&= o(1) + o(1) + o(1) + o(1) + o(e(n)) v P_n + \sum_{k=1}^{n} \frac{a_{n,n-k} \in (k)}{P_k k^2},
\end{align*}
\]

by mean value theorem.

\[
= o(1) + o(1) + o(1) + o(1) + o\left(\frac{\in (n)}{P_n} \right) + o\left(\frac{\in (n)}{P_n} \sum_{k=1}^{n} \frac{a_{n,n-k}}{k^2} \right),
\]

by hypothesis of the theorem.

\[
= o(1) + o(1) + o(1) + o\left(\frac{\in (n)}{P_n} \right) O\left(\frac{A_{n,n}}{n^2} \right),
\]

\[
= o(1) + o(1) + o(1) + o(1) + o(1), \text{ as } n \to \infty
\]

(6.5.3) \quad = o(1), \text{ uniformly in } E, \text{ as } n \to \infty

Combining (6.5.1), (6.5.2) and (6.5.3), we have

\[
t_n(x) = \sum_{k=0}^{n} a_{n,n-k} \{S_{n-k}(x) - f(x)\}
\]

\[
= o(1), \text{ as } n \to \infty, \text{ uniformly in } E.
\]

This completes the proof of our theorem.