CONTENTS

Acknowledgements i-ii
Contents iii-iv
List of Figures v-vi
List of Tables vii-viii
Abbreviations x-xii
List of Publications xiii

CHAPTER 1: REVIEW OF LITERATURE 1-20
1.1. General introduction.. 1-5
1.2. Ingredients of pan masala and gutkha.................... 6-7
1.3. Mechanism of carcinogenicity in Gutkha and Pan masala. 8-10
1.4. Role of Reactive Nitrogen Species (RNS) in formation of cancer. 11-12
1.5. Harmful effects of Pan masala and Gutkha ingredients..... 12-14
1.6. Micronucleus... 14
1.7. Formation of micronuclei................................... 15
1.8. Criteria for the identification of micronuclei............. 16
1.9. Comet assay.. 16
1.10. Fluorescent in situ hybridization (FISH)................... 17
1.11. Oral submucous fibrosis (OSMF)......................... 17-18
1.12. Mechanism of pathogenesis for Oral Submucous Fibrosis 18-19
1.13. Status of Gutkha and Pan masala in India............... 19-20

CHAPTER 2: MICRONUCLEUS INVESTIGATION IN HUMAN BUCCAL EPITHELIAL CELLS OF GUTKHA USERS 21-26
2.1. Introduction.. 21
2.2. Materials and Methods..................................... 22
2.3. Results... 23-25
2.4. Discussion... 25-26
2.5. Conclusion.. 26
*Advanced Biomedical Research 1(2): 1-4; 2012

CHAPTER 3: EVALUATION OF MICRONUCLEUS FREQUENCY BY ACRIDINE ORANG FLUORESCENT STAINING IN BUCCAL EPITHELIAL CELLS OF ORAL SUBMUCOSUS FIBROSIS (OSMF) PATIENTS 27-33
3.1. Introduction.. 27-28
3.2. Materials and Methods..................................... 28-29
3.3. Results... 29-31
3.4. Discussion... 32-33
3.5. Conclusion.. 33
*The Egyptian Journal of Medical Human Genetics 14:189-193; 2013
CHAPTER 4: ASSESSMENT OF DNA DAMAGE BY PANMASALA, GUTKHA CHEWING AND SMOKING IN BUCCAL EPITHELIAL CELLS USING ALKALINE SINGLE CELL GEL ELECTROPHORESIS (SCGE) 34-41
4.1. Introduction .. 34
4.2. Materials and Methods ... 35-36
4.3. Results ... 36-39
4.4. Discussion .. 40-41
4.5. Conclusion .. 41
* The Egyptian Journal of Medical Human Genetics 14:391-394; 2013

CHAPTER 5: EFFECT ON MICRONUCLEUS FREQUENCY AND DNA DAMAGE IN BUCCAL EPITHELIAL CELLS OF VARIOUS FACTORS AMONG PAN MASALA AND GUTKHA CHEWERS 42-61
5.1. Introduction .. 42-43
5.2. Materials and Methods ... 43-45
5.3. Results ... 45-52
5.4. Discussion .. 53-55
5.5. Conclusion .. 56
Supplementay Tables .. 56-61
*Oral Science International 12: 9-14; 2015

CHAPTER 6: DETECTION OF ANEUGENICITY AND CLASTOGENICITY IN BUCCAL EPITHELIAL CELLS OF PAN MASALA AND GUTKHA USERS BY PAN-CENTROMERIC FISH ANALYSIS 62-80
6.1. Introduction .. 62
6.2. Materials and Methods ... 63-65
6.3. Results ... 65-67
6.4. Discussion .. 68-71
6.5. Conclusion .. 71
Supplementay Tables .. 72-80
*Mutagenesis 1-5; 2014

BIBLIOGRAPHY: 81-106

APPENDIX: QUESTIONNAIRE
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Carcinogenic nitrosamines that could be derived from major ingredients of pan masala (areca nut) and gutkha.</td>
<td>9</td>
</tr>
<tr>
<td>1.2</td>
<td>ROS generated by areca nut and catechu, polyphenols and slaked lime.</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Possible mechanism of action of the ingredients of Pan masala and Gutkha.</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Mechanism of ROS/RNS (Reactive Nitrogen Species) in inducing cancer.</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>Harmful effects of arecanut on human body systems.</td>
<td>13</td>
</tr>
<tr>
<td>1.6</td>
<td>Schematic representation of buccal mucosal cell layers with turnover.</td>
<td>14</td>
</tr>
<tr>
<td>1.7</td>
<td>Mechanism of micronucleus formation.</td>
<td>15</td>
</tr>
<tr>
<td>1.8</td>
<td>Mechanism of comet assay.</td>
<td>16</td>
</tr>
<tr>
<td>1.9</td>
<td>Micronucleus with centromeric and without centromeric region observed in the fluorescence in situ hybridisation.</td>
<td>17</td>
</tr>
<tr>
<td>1.10</td>
<td>Stages of Oral submucous fibrosis (OSMF).</td>
<td>18</td>
</tr>
<tr>
<td>1.11</td>
<td>Molecular mechanism of Oral submucous fibrosis (OSMF).</td>
<td>19</td>
</tr>
<tr>
<td>1.12</td>
<td>Map showing Tobacco banned states and Union Territories of India.</td>
<td>20</td>
</tr>
<tr>
<td>2.1</td>
<td>Total micronucleus frequency in 2000 cells.</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Buccal epithelial cell with (a) one micronuclei (b) two micronuclei (c) three micronuclei.</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Buccal epithelial cells showing micronucleus stained with acridine orange.</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Age distribution among different groups.</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>(a) Normal undamaged DNA of buccal epithelial cells in healthy individuals and (b) Damaged DNA of the buccal epithelial cell of Gutkha chewers along with smoking.</td>
<td>37</td>
</tr>
</tbody>
</table>
Figure 4.2: Comet tail length among various groups. C, control; PM, pan masala; G, gutkha; PMS, pan masala with smoking; GS, gutkha with smoking; S, smoking.

Figure 4.3: Age distribution among various groups.

Figure 5.1: Commercial brands of panmasala and gutkha.

Figure 5.2: Buccal epithelial cells with micronucleus in pan masala and gutkha chewers using giemsa stain at 200X (a) normal cell, (b) cell with one micronucleus, (c) cell with two micronucleus, (d) cell with three micronucleus.

Figure 5.3: Comet assay performed in buccal epithelial cells stained with ethidium bromide at 200X (a) Normal individual (b) Gutkha user.

Figure 6: Photomicrograph of nuclei showing FISH performed on buccal epithelial cells using human centromeric probes (A-showing signal within the nucleus; B-showing signal within the nucleus but not in micronucleus).