CHAPTER 1: INTRODUCTION

1.1 Soybean
1.1.1 Composition of soybean
1.1.1.1 Protein in soybean
1.1.1.2 Fat in soybean
1.1.1.3 Carbohydrates in soybean
1.1.1.4 Isoflavones in soybean
1.2 Benefits of soybean
1.2.1 Soybean in diabetes
1.2.2 Soybean in cholesterol and heart disease
1.2.3 Soybean in cancer
1.2.3.1 Breast cancer
1.2.3.2 Prostate cancer
1.2.3.3 Colon cancer
1.2.4 Soybean intake, menopause and osteoporosis
1.3 Non-nutritive components
1.3.1 Some undesirable properties of soybean
1.4 Organogenic transformation system of soybean
1.4.1 Cot node
1.4.2 Stem node
1.4.3 Shoot tip
1.5 Embryogenic culture transformation system
1.6 Whole-plant transformation systems
1.6.1 Floral dip
1.6.2 Pollen tube pathway
1.6.3 Composite plants
1.6.4 Virus-induced gene silencing
1.7 Applications of soybean transformation technology
1.7.1 Herbicide resistance
1.7.2 Modification of oil composition
1.7.3 Nematode resistance
1.7.4 Modification of phytochemical composition
1.7.5 Insect resistance
1.7.6 Disease resistance
1.7.7 Seed protein composition
1.8 Methods for producing transgenic plants
1.8.1 Agrobacterium-mediated gene transfer
1.8.2 Direct gene transfer
1.8.2.1 Polyethylene glycol (PEG) mediated gene Transfer
1.8.2.2 Electroporation
1.8.2.3 Microinjection
1.8.2.4 Microprojectile bombardment
1.9 Agrobacterium-mediated genetic transformation process
1.10 Oxalic acid
1.10.1 Synthesis and Storage of Oxalate
1.10.2 The involvement of oxalate in animal metabolism
1.10.3 The involvement of oxalate in plant metabolism
1.10.4 The involvement of oxalate in fungus metabolism
1.10.5 Oxalic Acid as Antinutritional and Pathogenicity Factor
CHAPTER 2: ESTABLISHMENT OF *IN-VITRO* REGENERATION AND TRANSFORMATION SYSTEM FOR SOYBEAN

2.1 Introduction
2.2 Materials and methods
 2.2.1 Competent bacterial cells preparation with calcium chloride method
 2.2.2 Mobilization of expression plasmid in *Agrobacterium* and confirmation
 2.2.3 Triparental mating
 2.2.4 PCR confirmation of recombinant clone
 2.2.5 Colony hybridization
 2.2.5.1 Probe preparation
 2.2.5.2 Prehybridization
 2.2.5.3 Hybridization
 2.2.5.4 Post-hybridization washing
 2.2.5.5 Exposing and developing of film
 2.2.6 Picking up the positive colonies
 2.2.7 Storage of bacterial strains
 2.2.8 Transformation of soybean
 2.2.8.1 Soybean variety
 2.2.8.2 Seed sterilization
 2.2.8.3 Seed germination
 2.2.8.4 Explant preparation
 2.2.8.5 Regeneration
 2.2.8.6 Selection of cotyledonary node in different concentration of antibiotic
 2.2.8.7 Evaluation of regeneration ability of soybean cotyledonary node explants
 2.2.9 Rooting
 2.2.10 Molecular analysis
2.3 Results
 2.3.1 Selection
 2.3.2 Regeneration
 2.3.3 Rooting
 2.3.4 Transient expression and molecular analysis of GUS
2.4 Discussion

CHAPTER 3: MOLECULAR ANALYSIS OF TRANSGENIC SOYBEAN EXPRESSING *OXDC* GENE FROM *F. VELUTIPES*

3.1 Soybean Transgene Validation
 3.1.1 Transgene integration
 3.1.2 Transgene expression
 3.1.3 Transgene expression stability
 3.1.4 Trait fulfilment by transgene
3.2 Materials and methods
 3.2.1 Maintenance of soybean cultivar
3.2.2 Agrobacterium-mediated transformation of soybean
3.2.2.1 Explant preparation for transformation
3.2.2.2 Preparation of Agrobacterium culture containing targeted plasmids
3.2.2.3 Co-cultivation and infection
3.2.2.4 Selection and regeneration of transformants
3.2.2.5 Rooting and hardening
3.2.3 Plant genomic DNA isolation
3.2.4 PCR analysis
3.2.5 Quantitative real time RT PCR
3.2.6 Protein extraction from seed materials
3.2.7 SDS-polyacrylamide gel electrophoresis (PAGE) of proteins
3.2.8 Western blot analysis
3.2.8.1 Transfer
3.2.8.2 Immunodetection
3.2.9 Oxalate decarboxylase assay
3.2.10 Determination of oxalic acid and formic acid
3.2.10.1 Extraction, derivatization and analysis of metabolites using GCMS
3.2.11 Analysis of total calcium and other micronutrients
3.2.12 Transgene stability
3.3 Results
3.3.1 Selection of transgenic plants expressing OXDC in soybean
3.3.2 Molecular characterization of transformants
3.3.3 Oxalate decarboxylase expression and enzyme activity
3.3.4 Biochemical analysis of the transgenic soybean
3.3.5 Copy number detection
3.3.6 Micronutrients levels of transgenic soybean
3.4 Discussion

CHAPTER 4: PURIFICATION AND CHARACTERIZATION OF α-GALACTOSIDASE FROM F. VELUTIPES

4.1 Introduction
4.1.1 Flammulina velutipes: edible mushroom
4.1.1.1 Fruiting body induction of Flammulina velutipes
4.1.2 α-galactosidase
4.1.2.1 Catalytic activity
4.1.2.2 Classification
4.1.2.3 Activities and substrate specificities of α-galactosidase
4.1.2.4 Properties of selected α-galactosidases from different organism
4.1.2.5 Fungal α-galactosidase genes
4.1.3 Role of α-galactosidase in biological system
4.1.3.1 Role in seed germination
4.1.3.2 Role in fruit ripening
4.1.3.3 Role in enhancing freezing tolerance
4.1.3.4 Fabry disease: mutation in α-galactosidase gene
4.1.4 Biotechnological applications of α-galactosidase
4.1.5 Soybean and α-galactosidase
4.2 Materials and methods
4.2.1 Culture used for α-galactosidase purification
4.2.2 Strains and plasmids
4.2.3 Media and chemicals
4.2.4 *Flammulina velutipes* growth conditions
4.3 Methods
4.3.1 *Flammulina velutipes* cDNA library construction
4.3.1.1 Isolation of high quality RNA
4.3.1.2 Isolation of mRNA
4.3.1.3 First strand synthesis
4.3.1.4 cDNA amplification by LD PCR
4.3.1.5 Proteinase K digestion
4.3.1.6 *Sfi*I digestion
4.3.1.7 cDNA size fractionation by CHROMA SPIN-400
4.3.1.8 Ligation of cDNA to λTriplEx2 vector
4.3.1.9 Packaging reaction
4.3.1.10 Titering the unamplified library
4.3.1.11 Library amplification
4.3.1.12 Titering of amplified library
4.3.2 α-galactosidase enzyme assay
4.3.3 Preparation of standard curve and protein estimation
4.3.4 Preparation of standard curve for para-nitrophenol
4.3.5 Purification of α-galactosidase from *Flammulina velutipes*
4.3.6 Gel electrophoresis of proteins
4.3.7 Staining and destaining of the gel
4.3.8 Determination of K_m
4.3.9 Effect of pH on α-galactosidase activity and stability
4.3.10 Effect of Temperature on α-galactosidase activity and stability
4.4 Results
4.4.1 Constructions of cDNA expression library
4.4.2 Purification of α-galactosidase
4.4.3 Enzyme unit and specific activity calculation
4.4.4 Effect of pH and temperature on the activity and stability of α-galactosidases
4.4.5 K_m and V_max for substrate pNP-α-D-acetyl-β-D-galactopyranoside
4.5 Discussion

CHAPTER 5: SUMMARY AND FUTURE PROSPECTS 107-111

CHAPTER 6: REFERENCES 112-147