Table of Content

List of Figures
List of Tables
Abbreviation
Index

<table>
<thead>
<tr>
<th>1. Introduction</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Ultrasound image characterization</td>
<td>1.4</td>
</tr>
<tr>
<td>1.2 Categorization of image dataset</td>
<td>1.6</td>
</tr>
<tr>
<td>1.3 Problem formulation</td>
<td>1.10</td>
</tr>
<tr>
<td>1.3.1 Proposed segmentation algorithms</td>
<td>1.14</td>
</tr>
<tr>
<td>1.3.2 Region extraction</td>
<td>1.15</td>
</tr>
<tr>
<td>1.3.3 Post processing</td>
<td>1.17</td>
</tr>
<tr>
<td>1.4 Result validation and finalization</td>
<td>1.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Review of Literature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>2.1</td>
</tr>
<tr>
<td>2.2 Conventional methods</td>
<td>2.1</td>
</tr>
<tr>
<td>2.2.1 Thresholding based segmentation</td>
<td>2.1</td>
</tr>
<tr>
<td>2.2.2 Seed based region growing and merging</td>
<td>2.3</td>
</tr>
<tr>
<td>2.2.3 Watershed transform</td>
<td>2.3</td>
</tr>
<tr>
<td>2.3 Model based segmentation methods</td>
<td>2.4</td>
</tr>
<tr>
<td>2.3.1 Markov Random Field (MRF)</td>
<td>2.4</td>
</tr>
<tr>
<td>2.3.2 Active contour model</td>
<td>2.5</td>
</tr>
<tr>
<td>2.3.3 Level set method</td>
<td>2.6</td>
</tr>
<tr>
<td>2.4 Neural network</td>
<td>2.7</td>
</tr>
</tbody>
</table>

| 3. Segmentation using Local Adaptive Thresholding on Texture Features Images | |

3.1 Introduction 3.1
3.2 Local Adaptive Thresholding 3.3
 3.2.1 Iterative thresholding algorithm 3.3
 3.2.2 Segmentation results obtained on original US images 3.6
3.3 Gray Level Co-occurrence Matrix (GLCM) 3.8
3.4 Texture feature extraction using GLCM 3.11
3.5 Proposed Algorithm 3.14
3.6 Results and analysis 3.15
 3.6.1 Segmentation results for “Image-1” 3.15
 3.6.1.1 Generation of Texture feature images 3.16
 1. Texture feature image for 0° angular relationship 3.16
 2. Texture feature image for 45° angular relationship 3.17
 3. Texture feature image for 90° angular relationship 3.17
 4. Texture feature image for 135° angular relationship 3.18
 3.6.1.2 Local Adaptive thresholding results 3.18
 1. Segmentation results for 0° angular relationship 3.18
 2. Segmentation results for 45° angular relationship 3.20
 3. Segmentation results for 90° angular relationship 3.21
 4. Segmentation results for 135° angular relationship 3.22
 3.6.2 Segmentation results for “Image-2” 3.24
 3.6.2.1 Generation of Texture feature images 3.24
 1. Texture feature image for 0° angular relationship 3.24
2. Texture feature image for 45° angular relationship 3.25
3. Texture feature image for 90° angular relationship 3.25
4. Texture feature image for 135° angular relationship 3.26

3.6.2.2 Local Adaptive thresholding results 3.27
1. Segmentation results for 0° angular relationship 3.27
2. Segmentation results for 45° angular relationship 3.28
3. Segmentation results for 90° angular relationship 3.29
4. Segmentation results for 135° angular relationship 3.30

3.6.3 Result analysis 3.32

3.7 Comparison with other methods 3.34
3.7.1 Results comparison for “Image-1” 3.34
3.7.2 Results comparison for “Image-2” 3.35

3.8 Complexity analysis 3.36
3.9 Observations and discussions 3.38

4. Segmentation using Vector Quantization based Clustering

4.1 Introduction 4.1
4.2 Proposed Algorithm 4.3
4.3 Vector Quantization (VQ) 4.4
4.4 Codebook Generation Algorithms 4.6
4.4.1 Linde Buzo Gray (LBG) 4.7
4.4.2 Kekre’s Proportionate Error 4.8
4.4.3 Kekre’s Error Vector Rotation (KEVR) 4.10
4.4.4 Kekre’s Median Codebook Generation
Algorithm (KMCG) 4.11
4.4.5 Kekre’s Fast Codebook Generation Algorithm (KFCG) 4.12
4.5 Cluster selection by sequential merging 4.14
4.5.1 Clustering results for “Image-1” 4.15
4.5.2 Merged cluster images for “Image-1” 4.16
4.6 Post processing 4.16
4.6.1 Segmentation results for “Image-1” 4.17
4.6.2 Segmentation results for “Image-2” 4.19
1. Cluster images for “Image-2” 4.20
2. Merged cluster images for “Image-2” 4.20
3. Demarcation results for “Image-2” 4.21
4.6.3 Segmentation results for “Image-3” 4.23
1. Cluster images for “Image-3” 4.23
3. Demarcation results for “Image-3” 4.24
4.6.4 Segmentation results for “Image-4” 4.26
4.6.5 Segmentation results for “Image-5” 4.28
4.7 Result analysis 4.30
4.8 Complexity analysis 4.31
4.9 Observation and discussions 4.34

5. Segmentation using Augmented KMCG and KFCG based Clustering

5.1 Introduction 5.1
5.2 Augmented KMCG 5.2
5.3 Augmented KFCG 5.4
5.4 Watershed Transform and Region Merging 5.6
5.5 Marker-controlled Watershed Transform 5.7
5.6 Results and analysis 5.8
5.6.1 Segmentation results for “Image-1” 5.8
5.6.2 Segmentation results for “Image-2” 5.11
5.6.3 Segmentation results for “Image-3” 5.14
5.6.4 Segmentation results for “Image-4” 5.16
5.6.5 Results comparison with other methods 5.18
 1. Comparison for “Image-1” 5.19
 2. Comparison for “Image-2” 5.20
 3. Comparison for “Image-3” 5.21
 4. Comparison for “Image-4” 5.22
5.7 Complexity analysis 5.23
5.8 Observations and discussions 5.24

6. Segmentation using VQ based Clustering on Probability Images

6.1 Introduction 6.1
6.2 Proposed algorithm 6.2
6.3 Generation of probability images 6.4
 6.3.1 Probability and its Histogram equalized Images for “Image-1” 6.6
 6.3.2 Results and analysis for “Image-1” 6.7
 6.3.2.1 Segmentation results for “Image-1” 6.7
 1. Results for LBG algorithm 6.7
 2. Results for KPE algorithm 6.8
 3. Results for KEVR algorithm 6.9
 4. Results for KMCG algorithm 6.10
 5. Results for KFCG algorithm 6.11
 6. Results for augmented KMCG 3x3 6.12
 7. Results for augmented KFCG 3x3 6.13
 6.3.3 Probability and its Histogram equalized images for “Image-2” 6.15
6.3.4 Results and analysis for “Image-2”
6.3.4.1 Segmentation results for “Image-2”
1. Results for LBG algorithm
2. Results for KPE algorithm
3. Results for KEVR algorithm
4. Results for KMCG algorithm
5. Results for KFCG algorithm
6. Results for augmented KMCG 3x3
7. Results for augmented KFCG 3x3

6.4 Result analysis
6.5 Observation and discussion

7. Segmentation using VQ based Clustering on Entropy Images
7.1 Introduction
7.2 Segmentation on probability images
7.2.1 Segmentation results of “Image-1”
7.2.2 Segmentation results of “Image-2”
7.3 Entropy and its Histogram Equalized Images
7.3.1 Entropy and histogram equalized entropy images for “Image-1”
7.3.2 Entropy and histogram equalized entropy images for “Image-2”
7.4 Result analysis
7.4.1 Segmentation results for “Image-1”
1. Results for augmented KMCG 2x2
2. Results for augmented KFCG 2x2
3. Results for augmented KMCG 3x3
4. Results for augmented KFCG 3x3
7.4.2 Segmentation results for “Image-2” 7.17
 1. Results for augmented KMCG 2x2 7.17
 2. Results for augmented KFCG 2x2 7.19
 3. Results for augmented KMCG 3x3 7.20
 4. Results for augmented KFCG 3x3 7.22

7.4.3 Comparison with other results 7.23

7.5 Complexity analysis 7.26

7.6 Observation and discussion 7.26

8. Segmentation using Region growing
 augmented KMCG and KFCG

8.1 Introduction 8.1
8.2 Proposed Algorithm 8.2
8.3 Training set design with Vector Sequencing 8.3
8.4 Demarcation of ROI with region growing 8.5
 8.4.1 Cluster formation and sequential merging 8.6
 1. Set of eight cluster images obtained Horizontally 8.7
 2. Set of eight cluster images obtained Vertically 8.7
8.4.2 Acquisition of Seed Vector 8.9
8.4.3 Closing the opening between cluster vectors 8.11
8.4.4 Region growing with seed vector 8.13
 8.4.4.1 Segmentation results for “Image-1” 8.15
 1. Results of augmented KMCG 2x2 8.16
 2. Results of augmented KFCG 2x2 8.17
8.4.4.2 Segmentation results for “Image-2” 8.18
 1. Results of augmented KMCG 2x2 8.19
 2. Results of augmented KFCG 2x2 8.21

8.5 Results analysis 8.23