Table of contents

Acknowledgements iv

Preface xix

Nomenclature xxiv

1 Introduction 2
  1.1 History and Scope of Fluid Dynamics 2
  1.2 Applications 4
  1.3 Continuum Hypothesis 7
  1.4 Classification of fluids 7
      1.4.1 Visco-elastic fluids 9
      1.4.2 Walter’s Model: 10
      1.4.3 Oldroyd Constitutive Equations 12
      1.4.4 Nanofluid 13
      1.4.4.1 Smart cooling nanofluids 14
      1.4.5 Casson fluid 14
  1.5 Classification of Fluid Flow 15
  1.6 Porous Media 17
  1.7 Hydrodynamics 18
  1.8 Magneto Hydrodynamics: 22
  1.9 Heat Transfer 25
      1.9.1 Steady and unsteady heat transfer 25
      1.9.2 Modes of heat transfer 26
          1.9.2.1 Conduction 26
          1.9.2.2 Convection 27
          1.9.2.3 Radiation 28
TABLE OF CONTENTS

1.9.2.4 Thermal Conductivity .................................. 28
1.9.2.5 Variation in Thermal Conductivity ................. 29
1.10 Mass Transfer and Concentration Boundary Layer Equations .... 30
  1.10.1 Governing equations of Mass Transfer ............ 30
  1.10.2 Modes of Mass Transfer ................................ 32
      1.10.2.1 Mass transfer by diffusion: .................. 32
      1.10.2.2 Mass transfer by convection: ................. 33
      1.10.2.3 Mass transfer by change of phase: ............ 33
  1.10.3 Convective Mass Transfer .............................. 33
1.11 Comparison between Heat and Mass Transfer ................... 34
1.12 Thermal and Concentration Boundary Layers .................. 35
1.13 Momentum, Heat and Mass Transfer Analogies: ............... 39
      1.13.1 Similarity Rules of Boundary Layers ............ 40
1.14 Dimensionless Parameters ................................ 40

2 Free Convection Boundary Layer Flow and Heat Transfer of a Nano fluid over a Moving Plate with Internal Heat Generation 45
  2.1 Introduction ........................................... 45
  2.2 Mathematical Formulation: ................................ 48
  2.3 Numerical Solution: .................................... 51
  2.4 Results and Discussion: ................................ 51
  2.5 Conclusions: ........................................... 52

3 Velocity and Thermal Slip effect on Flow and Heat Transfer due to an Exponentially Stretching sheet with Viscous Dissipation and Thermal Radiation 63
  3.1 Introduction: .......................................... 63
  3.2 Flow Analysis: ........................................ 65
  3.3 Heat Transfer Analysis: ................................ 66
  3.4 Numerical Solution: .................................... 68
  3.5 Discussion of Results: ................................ 68
  3.6 Conclusions ............................................. 70

4 Numerical investigation of an Unsteady Mixed Convective Mass and Heat Transfer MHD flow with Soret effect and Viscous Dis-
TABLE OF CONTENTS

sipation in presence of Thermal Radiation and Heat Source/Sink  81
4.1 Introduction: ................................................. 81
4.2 Problem Formulation: ........................................ 85
  4.2.1 Skin Friction: ........................................... 88
  4.2.2 Nusselt Number: ........................................ 88
  4.2.3 Shrewood Number: ...................................... 89
4.3 Solution Methodology: ....................................... 89
4.4 Results and Discussion: .................................... 89
4.5 Conclusions: .................................................. 91

5 Free Convective Heat Transfer Flow of a Casson fluid with Radiative and Dissipative effect due to Variable Thermal Conductivity and Internal Heat Generation past a Stretching Sheet.  110
5.1 Introduction: .................................................. 110
5.2 Mathematical Formulation: .................................. 113
5.3 Some Results connected with flow and heat transfer ...... 116
5.4 Numerical Solution: ......................................... 118
5.5 Results and discussion: ..................................... 118
5.6 Conclusions: ................................................... 121

6 Non-Newtonian Momentum Transfer past an Isothermal Stretching Sheet with Applied Suction  134
6.1 Introduction ................................................... 134
6.2 Flow analysis: ................................................ 136
6.3 Results and discussion: ..................................... 140
6.4 Conclusions: ................................................... 141