CHAPTER – 3

Education and Health in India: An Interstate Comparison of Gender Disparities
3.1 Gender disparities in Education between States of India

3.1.1 Literacy Rate

Inequality between men and women is one of the most crucial and yet one of the most persistent disparities in most societies. Differences in female and male literacy rates are one aspect of this broader phenomenon of gender-based inequality in India. Literacy among women opens the possibility of unlimited exposure to new information and more importantly to new ways of thinking and new perspectives on existing information. Also literate women are able to constructively express their talents and give direction to their aptitudes. This enables them to lead a life which is more fulfilling and satisfying. (Sahay, 1998)

Education of females not only enables them to lead a good life but also affects other individuals and society as a whole. As Ramachandran (2006) argue that ensuring girls go to school, education programs for adolescents and women’s literacy are today accepted as a three-pronged strategy to contain population growth, reduce maternal and child mortality, combat HIV and AIDS. Further Rangappa, (2008) emphasizes that Per capita Income, Total Fertility Rate, Infant Mortality Rate and Maternal Mortality Rate are influenced more by females’ education than males’ education.

Educational attainment and literacy are indicators of development of a society. Literacy rate in India has increased from 64.83 percent in 2001 to 74.04 percent in 2011. In 2011, literacy rate for males and females are 82.14 and 65.46 respectively. The increase in literacy rate for males and females during 2001-2011 is 6.88 and 11.79 percentage points respectively. An extremely positive development in the
present decade is that the gap of 21.59 percentage points recorded between male and female literacy rates in 2001 census has reduced to 16.68 percentage points in 2011. Though the target set for the year 2011-12 by the planning commission of reducing the gap to 10 percentage points has not been achieved. (Registrar General and Census Commissioner of India, 2011)

According to census 2011, India’s overall literacy rate is 74.04 percent but widespread disparity between states, residence (rural and urban) and gender (males and females) is observed. Though there is not much difference between urban males (89.67 percent) and urban females (79.92 percent) in literacy rate, a large difference is observed between rural males (78.57 percent) and rural females (58.75 percent). Further the difference between urban females (79.92 percent) and rural females (58.75 percent) is almost double the difference between urban males (89.67 percent) and rural males (78.57 percent). The difference in number of rural literates (68.91 percent) and urban literates (84.98 percent) in India is quite large and there is also a big gap between male literates (82.14 percent) and female literates (65.46 percent).

The factors responsible for low female literacy rate in India are gender based inequality, social discrimination and economic exploitation, occupation of girl child in domestic chores, low enrolment of girls in schools, low retention rate and high dropout rate, deprivation of access to information and alienation from decision-making process, absence of female teachers in schools and schools established in faraway places. As a result of these factors, women are caught in a vicious self perpetuating cycle (Rani, 2010).

Presentation of Gender gaps in literacy rates in Indian states is done by using maps. For maps regarding literacy, states having a literacy rate of below 70 percent are
considered as low literacy states and indicated by yellow color. States which have attained a literacy rate from 70 percent to 85 percent are considered as medium literacy states and indicated by green color while states which have attained a literacy rate of above 85 percent are considered as high literacy states and indicated by blue color in all maps showing attainment in literacy rates. For maps showing gender gap in attainments in literacy of states, a gender gap of 8 percentage points is considered as low level of gender gap and indicated by yellow color, while a gender gap from 8 to 18 percentage points is considered as medium level of gender gap and indicated by green color. A gender gap of above 18 percentage points is considered as a high level of gender gap and indicated by blue color in all maps showing gender gap in attainments in literacy.

Rural males’ and rural females’ literacy rates are shown in maps 1 and 2 respectively. There are many states (Kerala, Goa, Tripura, Himachal Pradesh, Delhi, Mizoram, Uttarakhand, Maharashtra and Sikkim) with high literacy rates (blue) in rural males but only one state (Arunachal Pradesh) with low literacy rate (yellow). Similarly there are many states with low literacy rates (almost all of India is yellow) in rural females but only one state (Kerala) with high level of literacy (blue). There is an absolute contrast in rural India if males’ and females’ literacy rates are compared. Map 3 shows gender gap in literacy rates in rural areas. Almost whole of India is blue (a gender gap of greater than 18 percentage points). Kerala in the south and Nagaland and Meghalaya in the north-east are yellow (a gender gap of less than 8 percentage points). Major states which have a medium level of gender gap (8 to 18) are Punjab, Himachal Pradesh, West Bengal, Tamil Nadu, Arunachal Pradesh, Assam, Delhi and few other small states.
In urban areas neither males nor females have low level of achievement in literacy rates in any of the states. There are no yellow states in map 4 and map 5. Urban females’ literacy is mostly medium (green in map 5) except some states (Mizoram, Kerala, Tripura, Meghalaya, Himachal Pradesh, Nagaland, Assam, Maharashtra and Sikkim) with high (blue) literacy rates. Urban males’ literacy is high (blue in map 4) in most of the states except a few states (Jammu and Kashmir, Uttar Pradesh and Bihar) which have a medium literacy rate (green in map 3). Map 6 shows gender gap in literacy rates in Urban India. Strikingly there is no state with high level (blue) of gender gap. This shows deep contrast between gender gap in rural and urban India (map 3 and map 6). In map 3 most of states show a high level (blue) of Gender gap. In Urban India (map 6) most of the states have a medium level (green) of gender gap with some states (Punjab, Himachal Pradesh, West Bengal, Kerala, Assam etc) showing a low level (yellow) of gender gap. In rural India fewer states (Kerala, Nagaland and Meghalaya) have low gender gap (yellow) in literacy as compared to urban India.

It is thus concluded from the study of Rural and Urban India that there is more gender disparity in literacy in Rural India as compared to Urban India. Kerala, Meghalaya and Nagaland are the only states which have a low level of gender disparity in literacy levels in both rural and urban areas. States which do not have high gender disparity (blue) in both rural (map 3) and urban areas (map 6) are Punjab, Himachal Pradesh, Delhi, West Bengal, Goa, Tamil Nadu, and all the northeastern states.

Maps 7 and 8 show overall (rural and urban together) literacy rates of Indian states for males and females respectively. None of the states has low level (yellow) of literacy in case of males (map 7). States showing high level of literacy (blue) are Kerala, Mizoram, Goa, Tripura, Delhi, Himachal Pradesh, Maharashtra, Uttarakhand, Sikkim,
Gujarat, Tamil Nadu, Manipur and Haryana. None of states show a high level (blue) of literacy rate except Kerala and Mizoram in case of females (map 8). Map 9 shows overall gender gap (rural and urban together) in India. Contiguity of deprivation in India which is associated with the so called BIMAROU states is evident in this map. High levels of gender gap (blue) are present in the states of Rajasthan, Jharkhand, Chhattisgarh, Madhya Pradesh, Jammu and Kashmir, Bihar, Uttar Pradesh, Haryana and Orissa.

From the above discussion it can be concluded that overall gender disparity in literacy rates in Indian states is highest in the BIMAROU states and Jammu and Kashmir. Low levels of gender disparity are observed in Kerala, Nagaland, Mizoram, and Meghalaya. All other states have a medium level of gender disparity.

3.1.2 School Attendance

School attendance rates presented indicate participation of all children in the age group 6-17 years attending school at any level, from primary through higher levels of education. There is not much difference in school attendance rate for boys if we compare rural and urban areas. Among girls, school attendance is lower in rural than in urban. In most states, overall (boys and girls together) school attendance rates are higher in urban areas than in rural areas. The only exceptions are Himachal Pradesh, Uttarakhand, and Sikkim. In this study of school attendance, a school attendance below 66 percent is considered as low level of attendance and shown by yellow color in maps, while from 66 percent to 76 percent is considered as medium level of attendance indicated by green color and a school attendance of greater than 76 percent is considered as high level of achievement in attendance and indicated by blue color in maps. For gender gap in attendance, a gap of less than 5 percentage points shall be
considered as low level of gender gap. A gender gap from 5 to 12 percentage points shall be called a medium level of gender gap while a gap of more than 12 percentage points shall be considered as high level of gender gap.

In rural India and among males (map 10) many northern and southern states have a high level (blue) of school attendance rate but only two states (Bihar and Meghalaya) have a low level (yellow) of school attendance. In contrast to rural males, rural females (map 12) have a low level (Yellow) of attendance in many states but fewer states (Kerala, Tamil Nadu, Goa, Himachal Pradesh, Uttarakhand, Delhi, Sikkim and Tripura) have a high level (blue) of attendance rates. States having high level (blue) of attendance in both rural males (map 10) and rural females (map 11) are Uttarakhand, Himachal Pradesh, Delhi, Tripura, Goa, Kerala and Tamil Nadu. States which have a low level of attendance among both rural males and rural females are Bihar and Meghalaya.

Gender gap is calculated by subtracting female attendance rate from male attendance rate. In Rural areas (map 12) highest gender gap is found in Rajasthan with a difference of 23.3 percentage points between males and females followed by Bihar, Jharkhand, Andhra Pradesh, Uttar Pradesh, and Chhattisgarh with a gender gap of 18.5, 17.6, 14.2, 13.2 and 13 percentage points respectively. All these states are blue in map 12. In rural areas low levels (yellow) of gender gap is found in Meghalaya, Nagaland, Sikkim, Delhi, Kerala, Tripura, Mizoram, West Bengal, Goa, Assam and Himachal Pradesh.

Gender gap in urban areas in India is 1 percentage point only which is negligible. An analysis of gender gap within India can be done by comparing maps 13 (urban male attendance) and map 14 (urban female attendance). Strikingly none of the states in
both the maps is yellow (less than 66 percent attendance). All the states are either green (66 to 76 percent attendance) or blue (more than 76 percent attendance). Urban male attendance map is more blue than green (area wise) while rural male attendance map is more green than blue (area wise). The situation becomes clear when we look at map 15 which summarizes the gender gap in different states/UTs. All of India is yellow showing gender gap of less than 5 percentage points except Rajasthan, Gujarat, Sikkim and Arunachal Pradesh which are green indicating a medium level of gender gap (5 to 12 percentage points). None of the states have high gender gap (greater than 12). But if we compare map 18 (urban gender gap) with map 17 (rural gender gap), it is observed that Himachal Pradesh, Delhi, West Bengal, Kerala, Goa, Sikkim, Assam, Nagaland, Mizoram, Tripura and Meghalaya are the only states which have a low level of gender gap (yellow) in both Urban and Rural India.

Overall (rural and urban together) males’ and females’ school attendance rates are shown in maps 16 and 17 respectively. In case of males there are many states which show a high level (blue) of school attendance but only two states (Bihar and Meghalaya) show low levels (yellow) of school attendance. In case of females there are many states (Gujarat, Rajasthan, Uttar Pradesh, Bihar, Jharkhand, Orissa and Arunachal Pradesh) which show a low level (yellow) of attendance. States with high levels of school attendance are Kerala, Tamil Nadu, Goa, Himachal Pradesh, Uttarakhand, Delhi, Sikkim, Manipur, Mizoram and Tripura.

There are many States (Himachal Pradesh, Delhi, Goa, Kerala, Tamil Nadu, Manipur, Mizoram and Tripura) which have high level (blue) of school attendance in both males (map 16) and females (map 17). There is only one state (Bihar) which has low level (yellow) of school attendance in both males’ and females’ school attendance. Overall (rural and urban together) gender gap in school attendance is shown in map.
18. High level (blue) of gender gap is observed in Rajasthan, Bihar and Jharkhand while low level (yellow) of gender gap is observed in Kerala, Goa, Delhi, Punjab, Himachal Pradesh, West Bengal and many northeastern states. Most of Indian states are green in map 18 showing a medium level of gender gap.

3.1.3 Gross Enrolment Ratio (GER) in Higher Education

At the time of independence, there were only 20 universities and 500 colleges in the country with 2.1 lakhs students in the higher education system. But, after independence, there has been a phenomenal growth in all these numbers. Now, it is a recorded fact that there is an increase of 29 times in the number of Universities, 71 times increase in the number of colleges, and the students enrolment has gone up to 97 times in the formal system of higher education as compared to the figures of Independent Year of India. The phenomenal increase in enrolment of this order would not have been possible without the growth in the number of institutions of higher learning, both universities and colleges in particular and increase in intake capacity of courses. (University Grants Commission, Government of India, 2012)

The access to higher education is generally measured by Gross Enrolment Ratio (GER) in higher education. GER measures the access level by taking the ratio of persons in all age group enrolled in various programs of higher education to total population in age group of 18 to 23 years. The Government has set a target of increasing the GER to 30% by 2020. (Ministry of Human Resource Development, Government of India, 2013)

Gross Enrolment Ratio of India during the session 2011-12 was 19.4 percent. It was 20.8 for males and 17.9 for females recording a gender disparity of 2.9 percentage points. If we look at the data of different states and union territories of India wide
disparities are observed among males and females as well as between male and females. GER among males is very high in Chandigarh, Manipur, Tamil Nadu, Delhi and Arunachal Pradesh (42.2, 38.5, 36.5, 35 and 33.6 respectively), and very low in Bihar, Andaman and Nicobar Islands, Jharkhand, Dadra and Nagar Haveli and Daman and Diu (11.8, 9.6, 8.8, 3.5 and 2.7 respectively). Among females the top five places in decreasing order of GER are secured by Chandigarh, Goa, Manipur, Puducherry and Delhi while bottom five places in increasing order of GER are occupied by Dadra and Nagar Haveli, Daman and Diu, Jharkhand and Bihar.

Higher education has the potential to empower women with knowledge and ways of understanding and manipulating the world around them. Education of women has been shown to be associated with lower fertility, infant mortality, and better child health and nutrition (Kishor & Gupta, 2009). Gender gap in GER is calculated by subtracting the female GER from male GER. Some states got positive values indicating higher male achievement while others got negative values indicating higher female achievements. We will consider negative gender gap as a sign of better performance than positive gender gap. States in which females' GER is better than males' GER are Kerala (-6.3), Goa (-4.8), Meghalaya (-4.5), Andaman and Nicobar Islands (-3.8) and Uttarakhand (-3.5) among others. The bottom five performers in terms of Gender gap are Arunachal Pradesh (14.1), Punjab (9.1), Nagaland (8.9), Andhra Pradesh (7.7) and Tamil Nadu (7.4).

In this study a GER of less than 17 percent is considered as low, from 17 to 27 percent as medium, and more than 27 percent as high level of achievement in Gross Enrolment Ratio. States falling in low GER category are indicated by yellow, medium GER category by green and high GER category is indicated by blue color.
Map 19 shows males' GER in states. Yellow states are all in central, eastern and north eastern regions while most of blue area is covered by southern states of Tamil Nadu and Andhra Pradesh with the exception of Haryana and Delhi in the north and Arunachal Pradesh and Manipur in the northeast. The rest of India is green showing medium level of GER. Map 20 shows females’ GER in states. A small area of India is covered by blue states. These are only five states (Uttarakhand, Delhi, Manipur, Tamil Nadu and Goa) with two of them being very small (Delhi and Goa) leaves India with almost negligible blue area. Again northern, central, and eastern states show low levels of achievements in GER shown by yellow. A clear north-south divide is observed with southern India having higher GER than northern and central India in both males as well as females. Map 21 shows total (male and female) GER. Again southern states of Tamil Nadu, Andhra Pradesh, and western state of Maharashtra are blue while central states of Uttar Pradesh, Madhya Pradesh, Chhattisgarh and eastern states of Bihar, Jharkhand, Orissa, and West Bengal are low GER states with yellow color.

Madhya Pradesh, Chhattisgarh, Bihar, Jharkhand and West Bengal and Assam are low achievers (yellow) in both males’ (map 19) and females’ (map 20) achievements in GER. Delhi, Tamil Nadu, Goa and Manipur are high achievers (blue) in both males’ and females’ achievements in GER.

When female GER is more than male GER the Gender gap (male GER minus female GER) becomes negative (or less than zero). Such states are considered as having a low level of gender gap and shown in yellow color. States having medium level of Gender gap (0 to 5) are shown in green shade while states having a high Gender gap (more than 5) are shown by blue color.
If we look at map 22 showing Gender Gap in higher education, low levels (yellow) of gender gap are observed in states of Uttar Pradesh, Uttarakhand, Himachal Pradesh, Assam, Meghalaya, Kerala and Goa while high levels (blue) of gender gap are observed in states of Rajasthan, Maharashtra, Andhra Pradesh, Tamil Nadu and Arunachal Pradesh. States which were high achievers in GER (Tamil Nadu, Andhra Pradesh and Maharashtra) in map 21 are also the states having high gender gaps shown by blue in map 22. Notable states are Goa, Kerala and Himachal Pradesh because these states have low gender gap (yellow in map 22) and high absolute achievement in GER (blue in map 21). Rajasthan, Punjab, Haryana and Arunachal Pradesh are the states which have low to medium (yellow to green in map 21) GER but high Gender gap (blue in map 22). All eastern states (Bihar, Jharkhand, West Bengal, and Orissa) and central states of Madhya Pradesh and Chhattisgarh are low GER (yellow in map 21) states with medium (green in map 22) gender gap. In fact these states can be considered as the worst performing states in India because no state is observed to be yellow in map 21 and blue in map 22.

3.1.4 Gross Enrolment Ratio (GER) in Higher Education among Scheduled Castes and Scheduled Tribes

To safeguard the interest of Scheduled Castes and Scheduled Tribes, the most deprived groups of the Indian Society, the constitution provides reservation in various services under Central and State Governments. The main objective is not to just provide jobs to increase their representation in services but to improve their social and educational status so that they can have their rightful place in the main-stream of the society. As per the constitutional provisions, the reservation for Scheduled Castes is 15% and 7.5% for Scheduled Tribes at the national level and the reservation in states is provided depending on their population in the concerned state. Towards this, a SCT
Cell had been set up in UGC and also constituted a Standing Committee for SC/ST to implement and monitor the Reservation Policy for them in Higher Education. (University Grants Commission, Government of India, 2012). Since the higher education is a tool for social and economic equality, UGC has been addressing national concerns of access, equity, equality, by implementing policies of Government of India and promoting several schemes and programs for the disadvantaged groups in eliminating social disparities. To make colleges and universities more responsive to the needs and constraints of the disadvantaged social groups, the UGC has initiated a scheme viz. Establishment of Equal Opportunity Cell in Colleges and Universities to oversee the effective implementation of policies and programs for disadvantaged groups and to provide guidance and counseling in academic, financial, social and other matters. (University Grants Commission, Government of India, 2012)

Top five states according to GER in higher education in Scheduled Castes are Arunachal Pradesh, Manipur, Mizoram, Meghalaya and Maharashtra in case of males as well as females. While Dadra and Nagar Haveli, Jharkhand, Jammu and Kashmir, Bihar, West Bengal and Punjab are the bottom six states in both males’ and females’ GER columns. Map 23 and 24 indicate GER for males and females of Scheduled Castes in India. More than half of India’s total area is covered in yellow (showing GER less than 17 percent) for males. All the northern and eastern states are yellow except Uttarakhand which is showing medium GER (17 to 27). Tamil Nadu and Karnataka in south and Gujarat in west also show medium GER while Maharashtra, Andhra Pradesh, and some states of North-east are states of comparatively high GER (shown in blue) of greater than 27 percent. In map 24 showing GER in higher education of SC females, similar pattern can be seen as there was in males’ map. The
northern and eastern states are low GER states except Uttarakhand which is a medium GER state. The states which have fallen one level down from males to females include Andhra Pradesh and Maharashtra (turned green from blue) and Gujarat (turned yellow from green). Notable states are Kerala and Daman and Diu which have risen one level up (from yellow to green) when we move from males to females. Other notable feature is that there is no change in level of GER of states of the north-eastern region as we move from males to females. Gender gap is shown in map 26. Uttar Pradesh, Uttarakhand, Himachal Pradesh in the northern India, Assam in the north-east Kerala in the south are notable negative Gender gap states (yellow). But all these states also have low (yellow) levels of GER also except Uttarakhand which lies in medium GER (green) level as shown in map 25. Highest Gender gap is observed Arunachal Pradesh (34), Andhra Pradesh (7.9), and Maharashtra (7.8). These states are shown in blue color in map 26. Among these states Maharashtra and Arunachal Pradesh also have a high level of GER also while Andhra Pradesh only has a medium level of GER as shown in map 25.

GER of Scheduled Tribes in higher education for males and females is shown in map 27 and 28 respectively. Among Northern states, Uttar Pradesh, Uttarakhand and Himachal Pradesh have the highest GER in males as well as females shown by blue color. Blue states in the south include Andhra Pradesh, Tamil Nadu for males while there is none for females. Goa and Manipur are other blue states for both males’ and females’ GER in higher education. Map 30 shows Gender gap in GER in higher education of Scheduled Tribes and map 29 show their GER in higher education. High gender gaps (greater than 5 percentage points) are observed in the states of, Andhra Pradesh, Tamil Nadu, Manipur, Arunachal Pradesh, Maharashtra, Daman and Diu and Rajasthan shown as blue states in map 30. Among these states Rajasthan, Daman and
Diu and Maharashtra also fall in low GER category (yellow) and Andhra Pradesh, Tamil Nadu and Arunachal Pradesh fall in medium GER category (green) while Manipur is the only state falling in high GER category (blue) as shown in map 29. Low (less than zero) gender gaps are observed in the states of Sikkim, Meghalaya, Uttarakhand, Kerala, Jharkhand and Himachal Pradesh. These states are indicated by yellow color in map 30. Among these states only Himachal Pradesh and Uttarakhand also have high GER (blue in map 29). Manipur and Kerala show medium GER (green in map 29) while Jharkhand and Meghalaya are low GER states (yellow in map 29).

3.1.5 A Study of Gender Gaps with reference to Absolute Female Achievements in Education Indicators

High values of achievements and low values of deprivation are considered desirable for any society. In this study I have attempted to study gender gaps in all the three educational achievement indicators (Literacy Rate, School attendance and Gross Enrolment Ratio in higher education) with reference to absolute female achievements in respective indicators. In this study I have focused more on the status of females in educational achievements. The idea behind this study is to solve the following problem. Suppose that any state has a high level of gender gap as well as high value of female achievement in any particular educational achievement indicator like mentioned above. Another state may be having lower gender gap as well as lower absolute female achievement as compared to the first state. Now if we only compare gender gap we arrive at conclusion that females in the second state are living better lives than the first state. The fact of the matter is that females in the first state may be leading more fulfilling, free and productive lives than the females of the second state. So I have chosen female absolute achievement as a reference to make sure that proper conclusions can be reached. The data shows that achievements of males are higher
than that of females in all indicators except a few instances where females' absolute achievements are higher than males leading to a negative value of gender gap. The total achievement (male and female together) can be high due to high male achievement in an indicator. In order to avoid the male bias inherently present in total achievement value of an indicator (leading to hiding of the actual status of females), I have used female achievements and not total achievements in all the three indicators under study. I have used three levels of achievements in this discussion; high level, medium level and low level of achievement. If we combine absolute achievements of females and gender disparity we can theoretically make nine combinations. These are

1. High absolute achievement (female) and Low gender disparity (HL)
2. High absolute achievement (female) and High gender disparity (HH)
3. High absolute achievement (female) and Medium gender disparity (HM)
4. Medium absolute achievement (female) and High gender disparity (MH)
5. Medium absolute achievement (female) and Low gender disparity (ML)
6. Medium absolute achievement (female) and Medium gender disparity (MM)
7. Low absolute achievement (female) and Medium gender disparity (LM)
8. Low absolute achievement (female) and Low gender disparity (LL)
9. Low absolute achievement (female) and High gender disparity (LH)

Any particular state has to fall in any of the above nine categories. The category (HL) shows the best possible performance while (LH) shows the worst performance of a state in the indicator concerned. LH would be the states on which special focus must be given by the policy makers because of dual deprivation i.e. low absolute achievement and high gender gap. Map 31 shows performance of states in literacy rates and gender gap in literacy. Kerala and Mizoram shown in blue color are the states with high level of absolute female achievements in literacy and at the same time
low levels of gender gaps in literacy rates. Yellow color states are those which have low absolute female achievements in literacy rates and at the same time high levels of gender gaps. These are worst performing states of the country in the area of female literacy and gender gap taken together. These states are contiguous stating from west (Rajasthan) moving through centre and north (Haryana, Uttar Pradesh, Madhya Pradesh, and Chhattisgarh) and ending in the east (Bihar, Jharkhand and Orissa). The only state which is away from this set of states is Jammu and Kashmir. All the other states are shown in green color.

In case of school attendance (map 32), states with high levels of absolute female achievements in attendance and simultaneously low levels gender gaps are shown in blue color. These are Himachal Pradesh and Delhi in the North, Kerala in the south, Goa in the west and Sikkim, Manipur, Mizoram and Tripura in the Northeast. States with low levels of female absolute achievements in school attendance and simultaneously high levels of gender gaps in school attendance within states are shown in yellow color. These states include Rajasthan in the west and Bihar and Jharkhand in the east. All the other states are shown in green color.

Map 33 shows gender gap in higher education in combined with absolute female GER in higher education. There are only two states with high levels of absolute female achievement in GER in higher education and at the same time low levels of gender gap. These are Uttarakhand in the North and Goa in the west. There are three states which need special attention with respect of women’s enrolment and gender gaps. These states are the ones with low levels of absolute female achievements in GER in higher education and at the same time high levels of gender gap between two genders. These states are Rajasthan, Punjab and Nagaland.
3.1.6 Education Maps

Map 1 Literacy Rate among Rural Males
Map 2 Literacy Rate among Rural Females
Map 3 Gender Gap in Literacy Rate in Rural India
Map 5 Literacy Rate among Urban Females
Map 6 Gender Gap in Literacy Rate in Urban India
Map 7 Literacy Rate among Males
Map 8 Literacy Rate among Females
Map 10 School Attendance among Rural Males
Map 11 School Attendance among Rural Females
Map 12 Gender Gap in School Attendance in Rural India
Map 13 School Attendance among Urban Males
Map 14 School Attendance among Urban Females
Map 15 Gender Gap in School Attendance in Urban India
Map 16 School Attendance among Males
Map 17 School Attendance among Females
Map 18 Gender Gap in School Attendance
Map 19 GER in Higher Education among Males
Map 20 GER in Higher Education among Females
Map 21 GER in Higher Education among Persons
Map 22 Gender Gap in GER in Higher Education
Map 23 GER in Higher Education among SC Males
Map 24 GER in Higher Education among SC Females
Map 25 GER in Higher Education among SC Persons
Map 26 Gender Gap in GER in Higher Education among SCs
Map 27 GER in Higher Education among ST Males
Map 28 GER in Higher Education among ST Females
Map 29 GER in Higher Education among ST Persons
Map 30 Gender Gap in Higher Education among STs
Map 31 Gender Gap in Literacy Rate in Combination with Female Literacy Rate
Map 32 Gender Gap in School Attendance in Combination with Female School Attendance
Map 33 Gender Gap Higher Education in Combination with Female GER in Higher Education
3.2 Gender Disparities in Health between States of India

3.2.1 Thinness or Under Nutrition

Malnutrition in adults can be assessed using the body mass index (BMI), which is defined as weight in kilograms divided by height in metres squared (kg/m²). A BMI below 18.5 indicates chronic energy deficiency or under nutrition. Adults with a BMI below 18.5 are considered to be too thin for their height. Adults with a BMI of 25 or higher are considered to be overweight or obese. A normal weight for height is indicated by a BMI of 18.5-24.9. According to Jose (2008), Chronic Energy Deficiency (under nutrition) tends to indicate the absence of freedom to lead a minimally healthy life, and hence is structurally different from overweight and obesity, which relate also to, inter alia, an unhealthy, affluent lifestyle.

Prevalence of under nutrition and over nutrition is widespread all over India. First we will look into the problem of under nutrition by studying the data showing percentage of men and women aged 15 to 49 years who are too thin for their height (BMI of less than 18.5). In our maps, less than 20 percent of population being too thin is considered a low level of prevalence of under nutrition, from 20 to 35 percent is considered moderate level and more than 35 percent of population being too thin is considered a high level of prevalence of under nutrition. Low level of under nutrition is shown by yellow color, moderate level of under nutrition is shown by green color and high level of under nutrition is shown by blue color.

As we look into Map 34 showing percentage of undernourished men, and map 35 showing percentage of undernourished women, it can be observed that all the states in which men have a low BMI, women also have a low BMI but there are more states
showing low BMI (blue) for women as compared to men. Another striking feature of both the maps is that low BMI states are contiguous occupying the centre of country and dividing it into two parts leaving only the northern and southern tips.

Least percentage of men and women who are thin is found to be in Mizoram (9.2 percent) and Sikkim (11.2), while highest percentage of men and women who are thin is found to be in Tripura (41.7) and Bihar (45.1) respectively. Less than 20 percent of men are found to be too thin for their height in the states of Delhi, Sikkim, Arunachal Pradesh, Nagaland, Manipur, Mizoram and Meghalaya shown by yellow color in map 34. Moderate percentage of undernourished men is found in all southern states, all northern states close to Jammu and Kashmir including Haryana and Maharashtra in the west. Highest percentage of undernourished men is found in contiguous states starting from Gujarat through BIMAROU states to West Bengal and Assam in the northeast. Map 35 shows percentage of undernourished women. High percentage of undernourished women (blue) is present all the states except Kerala, Punjab, Delhi, Sikkim, Arunachal Pradesh, Manipur, Nagaland, Mizoram and Meghalaya which have a low percentage (yellow) of undernourished women and Jammu and Kashmir, Himachal Pradesh, Uttarakhand, Haryana, Tamil Nadu and Andhra Pradesh which have a moderate (green) percentage of undernourished women.

Map 36 shows gender gap in percentage of low BMI population in each state. Yellow color states are those in which higher percentage of men is undernourished than women resulting in a negative value (less than 0) of gender gap. Green color states shown a moderate level of gender gap (0 to 4 percentage points) and blue states are those in which gender gap is more than 4 percentage points. High gender gap (blue) is found in states of Orissa, Jharkhand, Bihar, Chhattisgarh, and Mizoram. Low gender gap (yellow) is found in Kerala, Rajasthan, Uttar Pradesh, Punjab, Jammu and
Kashmir, Sikkim, Manipur and Tripura. In all these states (yellow), there are more undernourished men than women. All other states are moderate gender gap (green) states.

4.2.2 Obesity or Over Nutrition

People having a BMI of more than or equal to 25 are considered overweight or obese. These people are so because of over nutrition. Unbalanced diet leads to over nutrition which results in bulky and unhealthy body. Prevalence of overweight population in Indian states is shown in maps 37 for men and map 38 for women. Yellow color indicates that less than 5 percent of population (men or women) is overweight, green color indicates that from 5 to 15 percent population is overweight and blue color indicates that more than 15 percent of population is overweight.

Less than 5 percent (yellow) of men are overweight in states of Madhya Pradesh, Chhattisgarh, Jharkhand and Tripura. Lowest percentage of overweight men is present in Madhya Pradesh (4.3 percent). Similarly only a few states (Kerala, Goa, Punjab and Delhi) have a high level of percentage (blue) of overweight men, but highest percentage of overweight men is found in Punjab (22.2 percent). Most of the states have a moderate percentage (green) of overweight men. The situation is quite different in case of overweight women (map 38). There is only one state (Bihar) in which percentage of overweight women is less than 5 percent (yellow). In Bihar 4.6 percent of women are overweight. Highest percentage of overweight women is found to be in Punjab (29.9 percent). There are many other states (Jammu and Kashmir, Gujarat, Sikkim and all Southern states in which more than 15 percent (blue) of women are overweight. All the other states have a moderate percentage (green) of overweight women.
Map 39 show gender gap in percentage of population which is overweight or obese. States in which percentage of overweight men is more than women (leading to a negative gender gap or less than zero gender gap) are shown by yellow color. For moderate gender gap (from 0 to 4 percentage points) in overweight population green color is used while for high gender gap (greater than 4 percentage points) in overweight population blue color is used. If we look at map 39 there are only three states (Bihar, Mizoram and Meghalaya) with low or negative gender gap (yellow) with Bihar at the bottom. High gender gap states (blue) are scattered all over the country with no pattern at all. Blue states include three Southern states (Kerala, Tamil Nadu and Karnataka), two Western state (Goa and Gujarat), one Eastern state (West Bengal), three Northern states (Jammu and Kashmir, Punjab and Uttarakhand) and one Northeastern state (Manipur).

3.2.3 Anemia

According to Jose (2008), Iron deficiency anaemia, one of the most widespread forms of women’s malnutrition in developing countries. Gopaldas (2006) argues that Vitamin A deficiency (VAD), iodine deficiency disorders (IDD) and iron deficiency anemia (IDA) have been identified as major micronutrient problems since 1970. Although we have progressed quite well with the control of VAD and IDD, we are still way behind when it comes to IDA.

Available studies on prevalence of nutritional anemia in India show that 65% infant and toddlers, 60% 1-6 years of age, 88% adolescent girls (3.3% has hemoglobin <7 gm./dl; severe anemia) and 85% pregnant women (9.9% having severe anemia. The prevalence of anemia was marginally higher in lactating women as compared to pregnancy. The commonest is iron deficiency anemia. The National Nutrition Anemia
Prophylaxis Program was launched in 1970 to prevent nutritional anemia in mothers and children. Under this program, the expected and nursing mothers as well as acceptors of family planning are given one tablet of iron and folic acid containing 60 mg elementary iron which was raised to 100 mg elementary iron, however folic acid content remained same (0.5 mg of folic acid) and children in the age group of 1-5 years are given one tablet of iron containing 20 mg elementary iron (60 mg of ferrous sulphate and 0.1 mg of folic acid) daily for a period of 100 days. This program is being taken up by Maternal and Child Health (MCH), Division of Ministry of Health and Family Welfare. Now it is part of RCH program. National programs to control and prevent anemia have not been successful. Experiences from other countries in controlling moderately-severe anemia guide to adopt long term measures i.e. fortification of food items like milk, cereal, sugar, salt with iron. Nutrition education to improve dietary intakes in family for receiving needed macro/micro nutrients as protein, iron and vitamins like folic acid etc. for hemoglobin synthesis is important. Nutritional Anemia Control Program should be comprehensive and incorporate nutrition education through school health and ICDs infrastructure to promote regular intake of iron/ folic acid-rich foods, to promote intake of food which helps in absorption of iron and folic acid and adequate intake of food. (National Institute of Health and Family Welfare, Government of India, 2013)

Anemia is caused by shortage of hemoglobin in blood. In this study data shows percentage of men and women aged 15 to 49 years suffering from anemia. A woman is anemic if 1 dl of her blood contains less than 12 grams of hemoglobin and a man is anemic if 1 dl of his blood contains less than 13 grams of hemoglobin.

In this study if less than 20 percent of population of a state is suffering from anemia then it is considered as low level of prevalence of anemia and shown by yellow color
in maps. If population suffering from anemia is from 20 percent to 50 percent then it is considered as moderate level of prevalence of anemia and indicated by green color in maps and an anemic population of more than 50 percent is considered as high level of prevalence of anemia and is shown in blue color in maps. For Gender gap, percentage anemic population among males is subtracted from percentage anemic population among females to get gender gap. A positive value of gender gap shows female deprivation which is considered as poor performance while negative value of gender gap is considered as hence good performance (low level of gender gap) by a state.

Map 40 shows prevalence of anemia in India among males. None of the states show a high level (blue) of anemia among males. States having moderate levels (green) of anemia among males are Gujarat in western India, Rajasthan, Uttar Pradesh and Uttarakhand in northern India, Madhya Pradesh and Chhattisgarh in Central India, Bihar, Jharkhand, Orissa and West Bengal in Eastern India, Andhra Pradesh in Southern India and Arunachal Pradesh, Assam, Tripura and Sikkim in Northeastern India. States which show low levels (yellow) of anemia among men are Jammu and Kashmir, Himachal Pradesh, Punjab, Haryana and Delhi in Northern India, Kerala, Tamil Nadu, Karnataka, in Southern India, Maharashtra in Western India and Manipur and Mizoram in Northeastern India.

Map 41 shows prevalence of anemia in India among females. None of the states show low level (yellow) of anemia. Most of area is covered by blue color showing high level of anemia. Some states which show a moderate level of anemia are Punjab, Himachal Pradesh and Uttar Pradesh in the Northern India, Maharashtra in Western India, Kerala in Southern India and Manipur, Mizoram and Meghalaya in Northeastern India.
Map 42 shows gender gap in states of India. Most of states are blue showing a gender gap of more than 30 percentage points. There are very high disparities between genders in most of the states of Indian in terms of anemic population. There is only one state (Meghalaya) which shown a low level (yellow) of gender disparity (less than 15 percentage points). States which show a moderate level of gender disparity are Rajasthan, Punjab, Himachal Pradesh, Delhi, Uttarakhand, Uttar Pradesh, Orissa, Kerala, Goa and all northeastern states except Meghalaya (yellow) and Nagaland for which data is not available.

Highest percentage of anemic population among women lives in Jharkhand and Assam where 69.5 percent of all women aged 15 to 49 years are anemic. After these two states, Bihar, Tripura, West Bengal, Andhra Pradesh, and Orissa are the states in which women anemic population is more than 60 percent. While in case of males, highest percentage of anemic population lives in Assam where 39.6 percent of all males aged 15 to 49 years are anemic. After these two states, Meghalaya, Jharkhand, Tripura, Bihar, Orissa, West Bengal are the states in which men anemic population is more than 30 percent. Lowest percentage of anemic population among females (32.8 percent) as well as males (8 percent) lives in Kerala followed by Manipur, Goa and Punjab.

3.2.4 Mortality Rates (Neonatal, Post Neonatal and Child Mortality Rate)

In this study three indicators of mortality shall be studied. These are Neonatal mortality, Post Neonatal mortality and Child mortality. Neonatal Mortality Rate (NMR) is defined as the number of deaths per thousand live births in the first month of life. Post Neonatal Mortality Rate (PNMR) is the number of deaths per thousand live births after the first month of life but before first birthday. Child Mortality Rate
(CMR) is defined as number of deaths per thousand live births between first and fifth birthday.

Neonatal mortality Rate (NMR)

For explanation of maps regarding NMR yellow color shown low levels (less than 25) of NMR, green color is used for moderate levels of NMR (from 25 to 50) and blue color indicate high levels of NMR (greater than 50).

NMR depends upon access to basic medical care during pregnancy and after delivery. Good medical care during and after delivery may decrease NMR but with given medical facilities there is a biological advantage of females over males in surviving the first month of life. Male NMR is lowest in Kerala (16.5) and highest in Chhattisgarh (65.1) while female NMR is lowest in Kerala (12.4) and highest in Uttar Pradesh (53.2). These upper and lower limits of NMR in Indian states establish female biological advantage.

Map 43 presents NMR of males and map 44 shows NMR of females. States having low level of NMR (yellow) among males are Kerala, Tamil Nadu, Goa, Haryana, Delhi, West Bengal and some Northeastern states. There are lesser states with low level of NMR (yellow in map 43) among males than females. These are Kerala, Goa and Mizoram. Similarly high level of NMR (blue) is shown by more states among males than females. Among females Uttar Pradesh, Madhya Pradesh, Jharkhand and Assam show a high level of NMR. All these states except Assam also have a high level of NMR among males with additional states of Chhattisgarh, Orissa, West Bengal and Andhra Pradesh.
For explanation of gender gap states in which female NMR is lower than male NMR are shown in yellow color. Green color states are those in which females’ NMR is higher than males but the difference is from 0 to 5 per thousand live births while blue color is used females’ NMR is greater than males’ NMR but difference is greater than 5 per thousand live births. If we look at map 45 showing gender gap, almost all the states have a lower female NMR than male NMR (yellow). There are only two states in which males’ NMR is greater than females’ NMR. These are Rajasthan (green) and Assam (blue). So low levels of gender disparity in almost all the states of India clearly indicate female biological advantage associated with females in first month of life.

Post Neonatal Mortality Rate (PNMR)

For explanation of maps regarding PNMR, a PNMR of less than 12 is considered as a low level of PNMR and shown in yellow color. Moderate level is from 12 to 24, shown in green color, and high level is greater than 24, shown in blue color. If we look at map 46 for males and map 47 for females yellow states are scattered all around the country while blue states are contiguous. In males’ map Uttar Pradesh, Madhya Pradesh and some Northeastern states show a high level of PNMR while in females’ map Uttar Pradesh, Madhya Pradesh, Chhattisgarh, Uttarakhand, Bihar, Rajasthan and Arunachal Pradesh show a high (blue) level of PNMR. These are contiguous states except Arunachal Pradesh. Map 48 shows gender gap in PNMR. Gender gap is calculated by subtracting male PNMR from female PNMR. States in which female PNMR is lower than males are shown in yellow color. A gender gap from 0 to 5 per thousand live births is shown by green color and a gender gap of more than 5 per thousand live births is shown by blue color. States in which males’ PNMR exceeds females’ PNMR (yellow) include Himachal Pradesh, Delhi, Maharashtra, Orissa, Karnataka, Andhra Pradesh, Kerala, and many Northeastern states. High
gender gap (blue) is present in Tamil Nadu in South, Gujarat in West, Punjab, Uttarakhand and Uttar Pradesh in the North. No state in central and Northeastern India shows a high level of gender gap in PNMR.

Excess female mortality becomes evident in India in the period beyond one month of life. In most countries where infant and child mortality is driven by biology alone, female mortality in the first year of life beyond the first month continues to be lower than male mortality. In India, however, PNMR is considerably higher than NMR among females (Kishor & Gupta, 2009). There are considerable differences in gender gaps in NMR (map 45) and PNMR (map 48). Gender gaps within states in PNMR are more than those in NMR. Females’ NMR is lower than males’ NMR in almost all states. There are only two states (Rajasthan and Assam) in which males’ NMR is more than females’ NMR. Contrastingly females’ PNMR is lower than males’ PNMR in fewer states as compared to NMR and there are many states in which males’ PNMR is more than females’ PNMR. These states are Tamil Nadu, Gujarat, Uttar Pradesh, Punjab, Uttarakhand, Bihar, Jammu and Kashmir, Rajasthan, Haryana, Madhya Pradesh, Jharkhand, Chhattisgarh, West Bengal, Goa and Manipur. Higher female deprivation with passage of time is evident in the comparison of NMR and PNMR. It may be attributed to socio-environmental factors, prevalence of infectious diseases, and lack of immunization of females. According to Kishor and Gupta (2008) a fundamental indicator of gender inequality in India, and arguably, one of the most powerful, is a preference for sons being so strong that it is manifested as limiting the birth and survival of girls.

Child Mortality Rate (CMR)

Child mortality is the probability of death between first and fifth birthday. Child Mortality Rate (CMR) is the number deaths per thousand live births between first and
fifth birthday. For explanation of maps a child mortality rate of less than 10 per thousand live births is considered as low level of CMR and shown by yellow color in maps. Green color is used for moderate level (from 10 to 30) and blue color is used for high level (greater than 30) Child Mortality Rate in states of India. Kerala shows lowest CMR among males (1.4) as well as females (2.4). Jharkhand (36.7) shows highest CMR among males while Uttar Pradesh (43.2) shows highest CMR among females. Other states which show a very high (more than 40) CMR among females are Jharkhand and Bihar. Map 49 shows CMR for males. Map for males reveal that there are only three states (Jharkhand, Orissa and Arunachal Pradesh) with high levels (blue) CMR. In case of females (map 50) there are more states (Jharkhand, Chhattisgarh, Madhya Pradesh, Bihar, Uttar Pradesh and Arunachal Pradesh) which show a high level of CMR. Similarly there are fewer states with low levels (yellow) of CMR among females than males.

Map 51 shown gender gaps in CMR within states. Gender gap is calculated by subtracting males’ CMR from females’ CMR. States with negative gender gap values are shown by yellow color. Green color is used for showing moderate levels (from 0 to 5 thousand live births) of gender gaps while blue color is used for showing high levels (more than 5 per thousand live births) of gender gaps. States in which CMR among females is lower than that of males (yellow) are scattered all over the country. These states are Himachal Pradesh, Karnataka, Orissa, Sikkim, Meghalaya, Manipur and Arunachal Pradesh. There are many states showing high level of gender gap (blue). These are Jammu and Kashmir, Punjab, Haryana, Rajasthan, Gujarat, Uttar Pradesh, Madhya Pradesh, Chhattisgarh, Bihar, Tripura, Assam and Tamil Nadu. Highest gender gap is found to be in Uttar Pradesh (21.5) followed by Bihar (15.9), Gujarat (11.7) and Haryana.
3.2.5 A Study of Gender Gaps with Reference to Absolute Female Deprivations in Health Indicators

High values of achievements and low values of deprivation are considered desirable for any society. In this study I have attempted to study gender gaps in all the six health deprivation indicators (Thinness, Overweight and obesity, Anemia, Neonatal Mortality, Post Neonatal Mortality and Child Mortality) with reference to absolute female deprivations in respective indicators. In this study I have focused more on the status of females and their health deprivations. The idea behind this study is to solve the following problem. Suppose that any state has a high level of gender gap (female value – male value) and low value of female deprivation in any particular health deprivation indicator like mentioned above. Another state may be having lower gender gap (female value – male value) and higher absolute female deprivation as compared to the first state. Now if we only compare gender gap we arrive at conclusion that females in the second state are living better lives than the first state. The fact of the matter is that females in the first state may be leading more fulfilling, free and productive lives than the females of the second state because of lower value of female deprivation indicator in the first state than the second state. So I have chosen female absolute deprivation values as a reference to make sure that proper conclusions can be reached. The data shows that deprivations of females are higher than that of males in many indicators but in some cases males’ absolute deprivations are higher than females leading to negative values of gender gaps. The total deprivation (male and female together) can be low due to low male deprivation in an indicator. In order to avoid the male bias inherently present in total deprivation value of an indicator (leading to hiding of the actual status of females), I have used female achievements and not total achievements in all the six indicators under study. I have
used three levels of deprivations and achievements throughout this thesis; high level, medium level and low level. If we combine absolute deprivations of females and gender disparity we can theoretically make nine combinations. These are

1. High absolute deprivation (female) and Low gender disparity (HL)
2. High absolute deprivation (female) and High gender disparity (HH)
3. High absolute deprivation (female) and Medium gender disparity (HM)
4. Medium absolute deprivation (female) and High gender disparity (MH)
5. Medium absolute deprivation (female) and Low gender disparity (ML)
6. Medium absolute deprivation (female) and Medium gender disparity (MM)
7. Low absolute deprivation (female) and Medium gender disparity (LM)
8. Low absolute deprivation (female) and Low gender disparity (LL)
9. Low absolute deprivation (female) and High gender disparity (LH)

Any particular state has to fall in any of the above nine categories. The category (LL) shows the best possible performance while (HH) shows the worst performance of a state in the indicator concerned. HH would be the states on which special focus must be given by the policy makers because of dual deprivation i.e. low absolute deprivation and high gender gap.

Map 52 shows gender gap in percentage of thin/undernourished adult women with respect to absolute percentage of adult women who are undernourished. There are four contiguous states (shown in blue) in which there is dual deprivation of women in the form of high gender gap and high percentage of thin women. These states are Bihar, Jharkhand, Chhattisgarh and Orissa. Yellow states are those in which there is low gender gap and low percentage of thin women. These are Punjab, Delhi, Sikkim,
Mizoram and Kerala. All other states are shown in green color which corresponds to all other (remaining seven) combinations of gender gap and women thinness.

Map 53 shows gender gap in percentage of overweight adult women with respect to absolute percentage of adult women who are overweight or obese. There are nine states (blue) in which women face dual deprivation in the form of high gender gap along with high value of percentage of overweight women. These states are Jammu and Kashmir, Punjab, Haryana, Delhi, Gujarat, Karnataka, Kerala and Tamil Nadu. There is only one state (Bihar) in which women are better off with low gender gap and low percentage of overweight women. Bihar is shown in yellow color. All other states are shown in green color.

Map 54 shows gender gap in percentage of anemic adult women in each state with respect to absolute percentage of adult women who are anemic. Strikingly there is no state (yellow) in which low percentage of anemic women and low gender gap in prevalence of anemia exists. There are many states scattered all over the country in which high gender gaps in percentage of anemic population as well as high percentage of anemic women are present. These states with dual deprivation are shown in blue color. These states are Jammu and Kashmir, Haryana, Gujarat, Madhya Pradesh, Chhattisgarh, Bihar, Sikkim, Jharkhand, West Bengal, Karnataka, Andhra Pradesh, Tamil Nadu and Kerala. All other states are shown in green color.

Females’ deprivation in neonates is shown in map 55. There is only one state (Assam) in which high gender gap in neonatal mortality as well as high value of female neonatal mortality (blue) exists. States shown in yellow color are those states in which low female neonatal mortality as well low gender gap exists. These states are Kerala,
Goa, Meghalaya, Manipur, Mizoram, Sikkim, Nagaland, Tamil Nadu, Haryana, Delhi and West Bengal.

Map 56 shows gender gaps within states in Post Neonatal Mortality combined with female neonatal mortality. Three contiguous states (Uttar Pradesh, Uttarakhand and Bihar) are shown in blue. Girl child suffer with dual deprivation of high gender gap as well as high absolute levels of Post Neonatal Mortality in these states. There are four yellow states (Kerala, Himachal Pradesh, Maharashtra and Andhra Pradesh) in which are better off with respect to gender gaps as well as Post Neonatal Mortality. All other states are shown in green color.

Map 57 shows status of girl child with respect to gender gaps and absolute deprivation in girl child mortality. Four contiguous blue states (Chhattisgarh, Madhya Pradesh, Bihar and Uttar Pradesh) are the states in which girl child faces dual deprivation of high gender gaps as well as high absolute Child Mortality. There are two states in which Child Mortality among girl children within states is low along with low gender gap also. These states are Sikkim and Himachal Pradesh shown in yellow color.
3.2.6 Health Maps

Map 34 Percentage of Thin Men
Map 35 Percentage of Thin Women
Map 36 Gender Gap in Percentage of Thin Persons
Map 37 Percentage of Overweight or Obese Men
Map 38 Percentage of Overweight or Obese Women
Map 39 Gender Gap in Percentage of Overweight or Obese Persons
Map 40 Percentage of Anemic Males
Map 41 Percentage of Anemic Females
Map 42 Gender Gap among Anemic Persons
Map 43 Neonatal Mortality Rate among Males
Map 44 Neonatal Mortality Rate among Females
Map 45 Gender Gap in Neonatal Mortality Rate
Map 46 Post Neonatal Mortality Rate among Males
Map 47 Post Neonatal Mortality Rate among Females
Map 48 Gender Gap in Post Neonatal Mortality Rate
Map 49 Child Mortality among Males

UNIT

> 30
10 - 30
< 10
No data
Map 50 Child Mortality among Females
Map 51 Gender Gap in Child Mortality Rate
Map 52 Gender Gap among Thin Persons in Combination with Percentage of Thin Women
Map 53 Gender Gap among Obese Persons in Combination with Percentage of Obese Women
Map 54 Gender Gap among Anemic Persons in Combination with Percentage of Anemic Women
Map 55 Gender Gap in Neonatal Mortality Rate in Combination with Neonatal Mortality among Females
Map 56 Gender Gap in Post Neonatal Mortality in Combination with Post Neonatal Mortality among Females
Map 57 Gender Gap in Child Mortality in Combination with Child Mortality among Females