Contents

1 Introduction 1
 1.1 What is Quantum Dot? 1
 1.2 How to make Quantum Dot? 3
 1.3 Motivation 4
 1.4 Importance of Nitride Based Semiconductor QDs 7
 1.5 Calculation Method 12
 1.6 Problems Investigated 13
 1.7 Organization of Chapters 13

2 k.p Method and a Quantum Dot 16
 2.1 Introduction 17
 2.2 k.p Method 18
 2.2.1 Luttinger Kohn Functions 18
 2.2.2 Scheme of k.p Method 18
 2.2.3 k.p Hamiltonian 19
 2.2.4 Non-Degenerate Energy Bands 21
 2.2.5 Degenerate Energy Bands 22
 2.2.6 k.p Treatment of the Valence Band 24
 2.3 k.p Method and a Spherical Quantum Dot 26
 2.3.1 Eigenvalue Equation for the Wurtzite and Zinc-Blende Structures 29
3 Energy Levels of Nitride Quantum Dots: Wurtzite versus Zinc-blende Structure

3.1 Zinc-blende Hamiltonian Vs Wurtzite Hamiltonian
 3.1.1 Zero SOC case: Wurtzite Structure
 3.1.2 Zero SOC case: Zinc blende structure
 3.1.3 Finite SOC case

3.2 Hole Wavefunctions
 3.2.1 Wurtzite Structures
 3.2.2 Zinc-Blende Structures

3.3 Results and Discussion
 3.3.1 Zero SOC Case: Zinc-Blende Structure
 3.3.2 Zero SOC Case: Wurtzite Structures
 3.3.3 Results with SOC

3.4 Conclusions

4 Dark and Bright Excitonic States in Nitride Quantum Dots

4.1 Introduction

4.2 Selection Rules for optical transitions

4.3 Excitonic States and Dark and Bright Exciton
 4.3.1 Coulomb Attraction between Electron and Hole
 4.3.2 Inclusion of Exchange Interaction

4.4 Optical Processes at the Band Edges

4.5 Conclusions