CONTENTS

List of Figures i
List of Tables iii
List of Strains and Plasmids iv
List of Primers v
List of Abbreviations vi

CHAPTER I
1.1 INTRODUCTION 1

1.2 REVIEW OF LITERATURE 3
1.2.1 Attachment Sites 4
1.2.2 Integration and Intasome 5
1.2.3 Excision 6
1.2.4 Organization of the Integration Region 7
1.2.5.1 Targets of Integration 8
1.2.5.2 Secondary Targets 9
1.2.6 Proteins Involved in the Process of Recombination 9
1.2.7.1 Site-specific Recombinases 10
1.2.7.2 Tyrosine Recombinases 10
1.2.7.3 Examples of Tyrosine Recombinases 11
 Type I Proteins 13
 Type II Proteins 13
1.2.7.4 Serine Recombinases 14
 Resolvases 14
 Invertases 14
 Structural Features 15
 Large Resolvases 15
1.2.8 Integrase Family of Recombinases 16
1.2.9 Variations in the R-H-R-Y Residues 18
1.2.10 Integration Host Factor 20
1.2.11 Excisionase 21
1.2.12 Uses and Applications of Bacteriophages 21
 Vectors derived from phages 22
 Vectors being used in Actinomycetes 23
1.3 AIMS AND OBJECTIVES 23

CHAPTER II
2.1 MATERIALS 25
2.2 METHODS 32

CHAPTER III Identification of the Integration Region of the Phage PIS136
3.1 INTRODUCTION 41
3.2 METHODS 43
3.2.1 Preparation of genomic DNA from Saccharomonospora sp. PA136 which is a lysogen for the phage PIS136 43
3.2.2 Identification of the integration region of the phage 43
3.2.3.1 Identification of the junction fragments 44
3.2.3.2 Cloning and sequencing of the junction fragments 44
3.2.4 Sequencing the C5 fragment 45
3.2.5 Sequencing using a thermo stable polymerase 45
3.2.6 Sequencing of the regions flanking C5 fragment 47
3.2.7.1 Assembly and analysis of the C5 fragment 47
3.2.7.2 Multiple sequence alignment and phylogenetic relationship of Integrase

3.3 RESULTS
3.3.1 Identification of the integration region
3.3.2 Identification of the junction fragments
3.3.2.1 Cloning and Sequencing of the Junction Fragments
3.3.3 Sequencing the C5 fragment
3.3.4 Identification of a Palindrome and its Sequencing
3.3.5 Sequencing of the Regions Flanking C5
3.3.6 ORFs Prediction in the C5 Fragment
3.3.6.1 ORFs Prediction in the C5 Fragment
3.3.6.2 Recognition of Putative integrase gene by Sequence Analysis

3.4 DISCUSSION

CHAPTER IV Expression and Purification of Integrase

4.1 INTRODUCTION
4.2 METHODS
4.2.1 Amplification of integrase and cloning in pET22b
4.2.1.1 Amplification of integrase and cloning in pET22b
4.2.1.2 Expression of IntPIS136
4.2.1.3 Solubility of IntPIS136
4.2.2 Cloning in Plasmid pMALc2
4.2.2.1 Cloning in Plasmid pMALc2
4.2.2.2 Expression of MBPIntPIS136
4.2.3 Western blotting
4.2.4 Solubilization of IntPIS136 during expression from pET22b
4.2.5 Presence of IntPIS136 bound to DNA
4.2.6 Purification of IntPIS136 under Denaturation conditions
4.2.6.1 Purification of IntPIS136 under Denaturation conditions
4.2.6.2 Refolding of the denatured protein
4.2.7 Purification of native IntPIS136
4.2.7.1 Purification of native IntPIS136
4.2.7.2 Dialysis to remove Imidazole and NaCl
4.2.8 Purification of MBP-IntPIS136 Using Amylose Resin
4.2.9 Generation of Anti-Integrase Antibodies

4.3 RESULTS
4.3.1 Expression of IntPIS136
4.3.1.1 Expression of IntPIS136
4.3.1.2 Expression of IntPIS136 as a MBP fusion protein
4.3.2 Solubility of IntPIS136
4.3.2.1 Solubility of IntPIS136
4.3.2.2 Expression of IntPIS136 in the Presence of a Chaperone
4.3.2.3 IntPIS136 is bound to DNA
4.3.3 Purification of IntPIS136 under Denaturation Conditions
4.3.3.1 Purification of IntPIS136 under Denaturation Conditions
4.3.3.2 Refolding of the purified IntPIS136
4.3.4 Purification of native IntPIS136
4.3.5 Purification MBP-IntPIS136 using affinity to Amylose resin

4.4 DISCUSSION

CHAPTER V Functional Analysis of IntPIS136 in vivo

5.1 INTRODUCTION
5.2 METHODS
5.2.1 Construction of a Tyrosine Mutant of IntPIS136
5.2.1.1 Construction of a Tyrosine Mutant of IntPIS136
5.2.1.2 Cloning and Expression of Int(Y351F)PIS136 in pET22b
5.2.2 Viability of BL21(DE3) Cells After IntPIS136 Expression
5.2.3 Growth of the Cells without Antibiotic Pressure after IntPIS136 expression
5.2.4 Segregation of the Resistance markers to determine linkage of the three antibiotic resistance genes
5.2.5 Purification of pM15
5.2.5.1 Purification of pM15
5.2.5.2 Determination of the Size of pR1 and pR2
5.2.6.1 Mapping of pR1
5.2.6.2 Mapping of pR2
5.2.6.3 Sequence Analysis of pR1 and pR2
5.2.7.1 T7 Endonuclease I Treatment of pM15
5.2.7.2 S1 Nuclease Treatment of pM15

5.3 RESULTS
5.3.1 Expression of Int(Y351F)_PIS136 in pET22b
5.3.2 Expression of Int_PIS136 is Toxic to _E. coli_ Cells
5.3.3.1 Status of pKY206 after Int_PIS136 expression
5.3.3.2 Presence of pLysS has an Effect on GroEL Expression
5.3.3.3 Expression of Int_PIS136 links the Antibiotic Resistance Genes
5.3.4 Antibiotic Resistance Genes get physically linked after Int_PIS136 Expression
5.3.5.1 pM15 is a Recombinant
5.3.5.2 pR1 and pR2 are not two Topological forms of pM15
5.3.6.1 Restriction and Genetic Map of pR1
5.3.6.2 Mapping of pR2
5.3.6.3 Sequence Analysis of pR1 and pR2
5.3.7 Is pM15 a hetero-duplex?
5.3.7.1 T7 Endonuclease I Treatment of pM15
5.3.7.2 S1 Nuclease Treatment of pM15
5.3.7.3 EM and AFM Analysis of plasmid pM15

5.4 DISCUSSION

CHAPTER VI DNA-Protein interaction studies
6.1 INTRODUCTION
6.2 METHODS
6.2.1 Preparation of Substrate DNA fragments
6.2.2.1 DNA-Protein Interaction Assay by EMSA
6.2.2.2 Buffers used for DNA-Protein Interaction Assays
6.2.2.3 DNA-Protein Interaction
6.2.3 In vitro Recombination Assay
6.3 RESULTS
6.3.1.1 Electrophoretic Mobility Shift Assay using His tagged Int_PIS136
6.3.1.2 Effect of SDS on the DNA-Protein Interaction
6.3.2.1 Binding of MBP fusion protein with cruciform structure
6.3.2.2 EMSA using the internal fragments of _integrase_ gene as substrates
6.3.3.1 EMSA using the C-terminal fragment of _integrase_ gene as a substrate
6.3.3.2 Interaction is Specific and Sensitive to High Salt and SDS
6.3.3.3 Interaction is sensitive to Anti-Int_PIS136 Antibodies
6.3.4 Sequence Requirement for Binding
6.3.5.1 In vitro Recombination Assay
6.3.5.2 Characterization of the In vitro Recombination Assay Product

6.4 DISCUSSION

CHAPTER VII
7.1 DISCUSSION and SUMMARY
7.2 CONCLUSIONS
BIBLIOGRAPHY