LIST OF TABLES

Table 1 The number of juveniles of *Macrobrachiutm malcolmsonii* collected at Jederpalayam bed regulator in the Cauvery river during 1979-1998.

Table 2 Monthly collection of juveniles of *M.malcolmsonii* at Jederpalayam bed regulator in the Cauvery river during 1979-1998.

Table 3 Proximate composition of various raw materials used for the preparation of feed for the assessment of protein requirement of the juveniles of *M.malcolmsonii*.

Table 4 Percentage composition of feeds 1 to 10 used for the assessment of protein requirement of the juveniles of *M.malcolmsonii* of 1.2 + 0.4 cm size.

Table 5 Pellet diameter and stability of feeds 1 to 10.

Table 6 Protein, energy and the ratio between protein and energy of feeds 1 to 10.

Table 7 Protein value of animal and plant sources, protein carbohydrate energy ratio and the protein and non-protein energy ratio of feeds 1 to 10.
Table S Percentage composition of feeds 11 to 21 used for the optimization of pellet size for *M. malcolmsonii* of different sizes.

Table 9 Pellet diameter, stability and sinking rate of feeds 11 to 21.

Table 10 Pellet diameter and stability of feeds 22 to 25.

Table 11 Percentage composition of feeds 26 to 35 used for identifying the ideal combination of ingredients for maximising the performance of *M. malcolmsonii* for Experiment-1.

Table 12 Proximate composition, energy values and protein energy ratio of feeds 26 to 35 used for Experiment-1.

Table 13 Growth performance of *M. malcolmsonii* fed on feeds 26 to 35 used for identifying ideal combination of various ingredients in Experiment 1 (based on 45-day growth).

Table 14 Percentage composition of the control feed (feed 36) and five experimental feeds (feeds 37 to 41) incorporated with greengram subjected to various treatments for the cultivation of *M. malcolmsonii* of 1.2 ± 0.4 cm size for Experiment-2.

Table 15 Pellet diameter and stability of feeds 36 to 41.
Table 16 Percentage composition of the five experimental feeds (feeds 42 to 46) incorporated with vegetable protein sources subjected to heat treatments for the cultivation of *M. malcohnsonii* of 1.3 ±0.3 cm size for Experiment-3.

Table 17 Pellet diameter and stability of feeds 42 to 46.
LIST OF FIGURES

Fig. 1 Location of Jederpalayam bed regulator across Cauvery river.

Fig. 2 Collection spot of *Macrobrachium inalcolinsonii* at Jederpalayam across Cauvery river.

Fig. 3 Monthly collection of the juveniles of *M.inalcolinsonii* at Jederpalayam bed regulator in Cauvery river during 1979-1998.

Fig. 4 Relation between the pellet stability and percentage of protein of feeds 1 to 10.

Fig. 5 Proximate composition of feeds 1 to 10 used for the assessment of protein requirement of the juveniles of *M.malcolmsonii* of 1.2 ± 0.4 cm size.

Fig. 6 Energy value of protein, fat and carbohydrate components in feeds 1 to 10.

Fig. 7 Relation between percentage protein of the feed and protein carbohydrate energy ratio of feeds 1 to 10.
Fig. 8 Rate of consumption in *M. malcolmsonii* of 1.2 ± 0.4 cm size fed on feeds 1 to 10 used for the assessment of protein requirement (based on 45-day growth).

Fig. 9 Rate of production of *M. malcolmsonii* of 1.2 ± 0.4 cm size fed on feeds 1 to 10 used for the assessment of protein requirement (based on 45-day growth).

Fig. 10 Feed conversion ratio in *M. malcolmsonii* of 1.2 ± 0.4 cm size fed on feeds 1 to 10 used for the assessment of protein requirement (based on 45-day growth).

Fig. 11 Gross growth efficiency of *M. malcolmsonii* of 1.2 ± 0.4 cm size fed on feeds 1 to 10 used for the assessment of protein requirement (based on 45-day growth).

Fig. 12 Protein efficiency ratio of *M. malcolmsonii* of 1.2 ± 0.4 cm size fed on feeds 1 to 10 used for the assessment of protein requirement (based on 45-day growth).

Fig. 13 Effect of protein energy ratio of feeds 1 to 10 on the feed conversion ratio and protein efficiency ratio in *M. malcolmsonii* of 1.2 ± 0.4 cm size used for the assessment of protein requirement (based on 45-day growth).
Fig. 14 Relation between the diameter of the pellets and pellet stability of feeds 11 to 21.

Fig. 15 Proximate composition of the feeds 11 to 21 used for optimization of pellet size for *M. malcolmsonii* of different sizes.

Fig. 16 Rate of consumption in *M. malcolmsonii* of four different sizes fed on feeds 11 to 21 used for the optimization of pellet size (based on 45-day growth).

Fig. 17 Rate of consumption in *M. malcolmsonii* of four different sizes fed on feeds 11 to 21 containing various diameters and pellet stability (based on 45-day growth).

Fig. 18 Rate of consumption in *M. malcolmsonii* of four different sizes fed on feeds 11 to 21 containing various diameters and sinking rates (based on 45-day growth).

Fig. 19 Rate of production in *M. malcolmsonii* of four different sizes fed on feeds 11 to 21 used for the optimization of pellet size (based on 45-day growth).

Fig. 20 Rate of production in *M. malcolmsonii* of four different sizes fed on feeds 11 to 21 containing various diameters and pellet stability (based on 45-day growth).
Fig. 21 Feed conversion ratio in *M. malcolmonii* of four different sizes fed on feeds 11 to 21 used for the optimization of pellet size (based on 45-day growth).

Fig. 22 Gross growth efficiency of *M. malcolmonii* of four different sizes fed on feeds 11 to 21 used for the optimization of pellet size (based on 45-day growth).

Fig. 23 Protein efficiency ratio of *M. malcolmonii* of four different sizes fed on feeds 11 to 21 used for the optimization of pellet size (based on 45-day growth).

Fig. 24 Optimum pellet size suitable for culturing *M. malcolmonii* of various sizes.

Fig. 25 Rate of consumption and rate of production of *M. malcolmonii* of various sizes fed on feeds 22 to 25 at six different feeding regimes (based on 45-day growth).

Fig. 26 Feed conversion ratio in *M. malcolmonii* of various sizes fed on feeds 22 to 25 at six different feeding regimes (based on 45-day growth).

Fig. 27 Gross growth efficiency of *M. malcolmonii* of various sizes fed on feeds 22 to 25 at six different feeding regimes (based on 45-day growth).
fig. 28 Protein efficiency ratio of *M. malcolmsonii* of various sizes fed on feeds 22 to 25 at six different feeding regimes (based on 45-day growth).

Fig. 29 Optimum feeding frequency suitable for rearing prawns of various sizes.

Fig. 30 Proximate composition of the control feed (feed 36) and five experimental feeds (feeds 37 to 41) incorporated with greengram subjected to various treatments for the cultivation of *M. malcolmsonii* of 1.2 ± 0.4 cm size for Experiment-2.

Fig. 31 Growth performance of *M. malcolmsonii* of 1.2 ± 0.4 cm size fed of the control feed (feed 36) and five experimental feeds (feeds 37 to 41) incorporated with greengram subjected to various treatments for Experiment-2 (based on 45-day growth).

Fig. 32 Proximate composition of feeds 42 to 46 incorporated with vegetable protein sources subjected to heat treatments for the cultivation of *M. malcolmsonii* of 1.3 ± 0.3 cm size for Experiment-3.
Fig. 33 Growth performance of *M. malcolmsonii* of 1.3 + 0.3 cm size fed on feeds 42 to 46 incorporated with vegetable protein sources subjected to heat treatments for Experiment-3 (based on 45-day growth).