<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
</table>

CHAPTER - 1

- **GENERAL INTRODUCTION**
 1

1.1 **INTRODUCTORY REMARKS**
 2

1.2 **SOME PRELIMINARIES CONCERNING THE ELECTRONIC STRUCTURE AND PHOTOPHYSICAL PROCESSES IN CARBONYL MOLECULES**
 14

1.2.1 **Electronic structure of the carbonyl group**
 14

1.2.2 **Photon emission and absorption processes**
 17

1.2.3 **Polarization of molecular electronic transitions**
 22

1.2.4 **Electronic vibrational interaction and the molecular electronic spectra**
 26

1.2.5 **Spin-orbit interaction and spin forbidden transitions**
 32

1.2.6 **Nonradiative electronic relaxation in excited molecular systems**
 37

1.2.7 **Solvent effect on the molecular electronic transitions**
 43
Chapter 2

Experimental Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.8 Electronic spectral properties of hydrogen-bonded systems</td>
<td>46</td>
</tr>
<tr>
<td>References</td>
<td>49</td>
</tr>
</tbody>
</table>

2. APPARATUS AND EXPERIMENTAL PROCEDURES

- 2.1 Absorption Measurements
 - 2.1.1 Absorption spectra | 59 |
 - 2.1.2 Excitation spectra | 61 |
- 2.2 Emission Spectroscopy
 - 2.2.1 Luminescence spectra | 63 |
 - 2.2.2 Polarization spectra: The method of photoselection | 65 |
 - 2.2.3 Phosphorescence lifetimes | 67 |
 - 2.2.4 Quantum yields | 68 |
 - 2.2.5 Triplet yield determination:
 - The biacetyl method | 69 |
- 2.3 Sample and solvent purification | 72 |

References: 75
CHAPTER - 3

A COMPARATIVE STUDY OF THE ELECTRONIC ABSORPTION AND THE LUMINESCENCE PROPERTIES OF ALKAYL – ARYL AND ALKAYL – PYRIDYL KETONES; ACETOPHENONE, p-METHYL ACETOPHENONE AND 2-, 3- AND 4- ACETYLPYRIDINES

3.1 INTRODUCTION

3.1.1 Materials and experimental procedures

3.2 RESULTS

3.2.1 Absorption studies

3.2.2 Emission studies

3.3 DISCUSSION

3.3.1 Characterization of the phosphorescent states

3.3.2 Effects of ring methyl substitution on the spectral properties of aromatic ketones

3.3.4 Effects of intermolecular H-bonding on the spectral properties of aromatic ketones

3.4 CONCLUSIONS

References
CHAPTER - 4

THE ELECTRONIC STATES AND THE LUMINESCENCE PROPERTIES OF SOME MONOARYL ALDEHYDES AND BENZOYL HALIDE:

BENZALDEHYDE, ISOMERIC PYRIDINE-
ALDEHYDES AND BENZYLCHLORIDE 132

4.1 INTRODUCTION 132
4.2 MATERIALS AND METHODS 133
4.3 RESULTS 136

4.3.1 Absorption and phosphorescence excitation spectra 136
4.3.2 Emission spectra 161

4.4 DISCUSSION 171
4.5 CONCLUSION 186

References 190

CHAPTER - 5

THE EMISSION AND ABSORPTION PROPERTIES OF AROMATIC CARBOXYLIC ACID AND ALIPHATIC AND AROMATIC CARBOXYLIC ACID ESTERS:

BENZOIC ACID, METHYL-, ETHYL-, BUTYL- AND BENZYL- BENZOATES, ETHYL PENYL ACETATE, BENZYL ACETATE AND BENZYL PROPIONATE 193
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 INTRODUCTION</td>
<td>194</td>
</tr>
<tr>
<td>5.2 MATERIALS AND METHODS</td>
<td>197</td>
</tr>
<tr>
<td>5.3 RESULTS</td>
<td>198</td>
</tr>
<tr>
<td>5.3.1 Absorption and excitation spectra</td>
<td>198</td>
</tr>
<tr>
<td>5.3.2 Emission</td>
<td>217</td>
</tr>
<tr>
<td>5.4 DISCUSSION</td>
<td>230</td>
</tr>
<tr>
<td>5.4.1 Energy level scheme and phosphorescence mechanism</td>
<td>227</td>
</tr>
<tr>
<td>5.4.2 On the fluorescence capability of</td>
<td></td>
</tr>
<tr>
<td>benzoic acid and the aromatic esters</td>
<td>233</td>
</tr>
<tr>
<td>5.5 CONCLUSIONS</td>
<td>236</td>
</tr>
<tr>
<td>Reference</td>
<td>241</td>
</tr>
</tbody>
</table>

CHAPTER - 6
PHOTOLUMINESCENCE OF AROMATIC CARBONYLS
AS PROBE FOR THE IDENTIFICATION OF
STRUCTURAL CHANGES IN MOLECULAR CRYSTALS:
A NOVEL SPECTROSCOPIC METHOD FOR THE
INVESTIGATION OF STRUCTURAL PHASE
TRANSITIONS IN MOLECULAR CRYSTALS 244

6.1 INTRODUCTION 245

6.1.1 The 'Photokinematical Approach: Principle 248

6.2 EXPERIMENTAL 251

6.2.1 Instrument and technique 251
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2 Sample preparation</td>
<td>251</td>
</tr>
<tr>
<td>6.2.3 Materials</td>
<td>253</td>
</tr>
<tr>
<td>6.3 RESULTS AND DISCUSSION</td>
<td>254</td>
</tr>
<tr>
<td>6.4 CONCLUSIONS</td>
<td>280</td>
</tr>
<tr>
<td>References</td>
<td>281</td>
</tr>
<tr>
<td>CHAPTER - 7</td>
<td></td>
</tr>
<tr>
<td>SUMMARY OF THE FOREGOING</td>
<td>290</td>
</tr>
<tr>
<td>7.1 SUMMARY OF THE RESULTS OF THE FOREGOING CHAPTERS</td>
<td>291</td>
</tr>
<tr>
<td>7.2 CONCLUDING REMARKS</td>
<td>296</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>259</td>
</tr>
</tbody>
</table>