APPENDIX NO. 7

Actual and estimated production of bidi in Murshidabad
district (1947-48 - 1974-75)

The production of bidis in Murshidabad district follows an exponential trend. So the production of bidis \(Y \) is related with the time \(t \) by the following equations:

\[
Y = a \cdot b^t, \quad \text{where } a \text{ and } b \text{ are constants taking logarithm of both sides we have, } \log Y = \log a + t \log b
\]

or \(Z = r + St \), where \(Z = \log Y \)

\[
\begin{align*}
 r &= \log a \quad \ldots \quad (i) \\
 S &= \log b \quad \ldots \quad (ii) \\
 t &= \text{time interval.}
\end{align*}
\]

The values of \(r \) and \(S \) of the above equation can be determined with help of the following equations:

\[
\begin{align*}
 \sum Z &= nr + S \sum t \quad \ldots \quad (iii) \\
 \sum Zt &= r \sum t + S \sum t^2 \quad \ldots \quad (iv)
\end{align*}
\]

<table>
<thead>
<tr>
<th>Years (n)</th>
<th>Actual number of bidis (Y) (in million)</th>
<th>log of (Y = Z)</th>
<th>(t)</th>
<th>(Zt)</th>
<th>(t^2)</th>
<th>Estimated number of bidies (in million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950-51</td>
<td>3,600</td>
<td>9.55630</td>
<td>4</td>
<td>38.22520</td>
<td>6</td>
<td>3,611.582</td>
</tr>
<tr>
<td>1955-56</td>
<td>7,200</td>
<td>9.85733</td>
<td>9</td>
<td>88.71597</td>
<td>81</td>
<td>5,064.974</td>
</tr>
<tr>
<td>1960-61</td>
<td>7,500</td>
<td>9.87506</td>
<td>14</td>
<td>138.29084</td>
<td>196</td>
<td>7,100.873</td>
</tr>
<tr>
<td>1965-66</td>
<td>7,500</td>
<td>9.87506</td>
<td>19</td>
<td>187.62614</td>
<td>361</td>
<td>9,958.636</td>
</tr>
<tr>
<td>1969-70</td>
<td>10,800</td>
<td>10.03342</td>
<td>23</td>
<td>230.76866</td>
<td>529</td>
<td>13,053.531</td>
</tr>
<tr>
<td>1972-73</td>
<td>18,000</td>
<td>10.2527</td>
<td>26</td>
<td>266.63702</td>
<td>676</td>
<td>15,990.885</td>
</tr>
<tr>
<td>1973-74</td>
<td>21,600</td>
<td>10.33445</td>
<td>27</td>
<td>279.03015</td>
<td>729</td>
<td>17,110.468</td>
</tr>
<tr>
<td>1974-75</td>
<td>25,200</td>
<td>10.40440</td>
<td>28</td>
<td>291.23920</td>
<td>784</td>
<td>18,306.066</td>
</tr>
</tbody>
</table>

\(n = \text{number of years} = 9 \)

\[
\begin{align*}
 \sum Z &= 89.52274 \quad \sum t &= 151 \quad \sum Zt &= 1529.82763 \quad \sum t^2 &= 3373
\end{align*}
\]

Using the values of \(n, \sum Z, \sum t, \sum Zt \) and \(\sum t^2 \) in the equations (iii) and (iv), the values of \(r \) and \(S \) are found out. The constants \(a \) and \(b \) are evaluated from equations (i) and (ii).

\(r = 9.44; \quad S = 0.03; \quad a = 2,754,200,000; \quad b = 1.07. \)