List of figures

Review of the literatures

Figure I: The common Opportunistic fungal infections.
Figure II: Examples of fungal infections.
Figure III: Risk factors predisposing to development of fungal infections.
Figure IV: Taxonomic classification of Candida and its phylogenetic relationship to other yeast species.
Figure V: Different clinical pictures of oropharyngeal candidiasis in HIV/AIDS patients.
Figure VI: Hypothetical defect in host cell defense against oropharyngeal candidiasis candidiasis in HIV infection.
Figure VII: Risk factors in pathogenesis of Vulvovaginal candidiasis.
Figure VIII: Structures of antifungals used in Candidiasis treatment.
Figure IX: Site and mechanism of action of different classes of antifungals on a typical fungal cell.
Figure X: Mechanism by which a Candida albicans cell might develop resistance.
Figure XI: Factors that may contribute to clinical resistance.
Figure XII: Schematic representation of depletion and enhancement theories of interactions between polyenes and azoles.
Figure XIII: The DENDRON system.
Figure XIV: The glyoxylate cycle and its interrelationship with other pathways.
Figure XV: Differential of Candida species by isolation on CHROMagar Candida.
Materials and Methods

Figure XVI: Antifungal susceptibility testing of the yeast. Scheme shows the procedure for the MIC test following the NCCLS protocols.

Figure XVII: The principle of the Coulter Manual CD4+ T-cells count kit used in this study.

Figure XVIII: Preparation of CARE-2 fragment.

Figure XIX: Image-processing and analysis.

Results

Figure 1: Microscopic morphology of *Candida* species.

Figure 2: Microscopic morphology of the Gram’s stain of clinical isolates.

Figure 3: *C. albicans*, germ tubes test.

Figure 4: The growth morphology of different *Candida* species on Tween corn meal agar.

Figure 5: Triphenyl tetrazolium chloride (TTC) reduction test.

Figure 6: Positive halo effect around an inoculated site on Tween opacity test.

Figure 7: Assimilation test of *Candida* species.

Figure 8: Percentage of oropharyngeal candidiasis (OPC) in HIV/AIDS patients.

Figure 9: Percentage of various *Candida* species isolated form HIV/AIDS patients with Oropharyngeal candidiasis.

Figure 10: Colony morphology of *C. albicans strains* isolated from HIV/AIDS patients with oropharyngeal candidiasis.

Figure 11: The in vitro fluconazole susceptibility test of all the *Candida* isolates from HIV/AIDS with oropharyngeal candidiasis.
Figure 12: Relationship between the CD4+ -T-cells count and the appearance of the severity of OPC lesions in the HIV/AIDS patients.

Figure 13: DNA fingerprinting patterns of all Candida strains obtained from HIV/AIDS patients with oropharyngeal candidiasis.

Figure 14: Dendrogram of the C. albicans isolates (total No. 65) from HIV/ AIDS patients with OPC.

Figure 15: Percentage of vulvovaginal candidiasis (VVC) in Diabetic women.

Figure 16: Percentage of the Candida species isolated from Diabetic patients with vulvovaginal candidiasis.

Figure 17: Percentage of the Candida species isolated from non-diabetic patients with vulvovaginal candidiasis.

Figure 18: colony morphology of the C. albicans strains was isolated from diabetic women vulvovaginal candidiasis.

Figure 19: colonies morphology of the C. glabrata strains was isolated from diabetic women vulvovaginal candidiasis.

Figure 20: The in vitro fluconazole susceptibility test of all the Candida isolates from diabetic and non-diabetic patients with vulvovaginal candidiasis.

Figure 21: DNA fingerprinting pattern of the 21 C. albicans isolates, obtained from Diabetic patients with vulvovaginal candidiasis, (vaginal swabs).

Figure 22: Dendrogram of the C. albicans isolates (total No. 21) from diabetic patients with vulvovaginal candidiasis.

Figure 23: DNA fingerprinting pattern of the eight C.albicans isolates, obtained from non-diabetic patients with vulvovaginal candidiasis.

Figure 24: Dendrogram of the C. albicans isolates (total No. 8) obtained from non-diabetic patients with vulvovaginal candidiasis.

Figure 25: Agarose gel patterns demonstrating the AP-PCR with AP50-1 primer.
Figure 26: Agarose gel patterns demonstrating the AP-PCR with AP50-1 primer of the *C. glabrata* isolates obtained from diabetic patients with vulvovaginal candidiasis.

Figure 27: Agarose gel patterns demonstrating the AP-PCR with AP50-1 primer of the *C. glabrata* isolates obtained from non-diabetic patients with vulvovaginal candidiasis.

Figure 28: Spot test of resistant isolates.

Figure 29: Colonies morphology of the azole resistant strains of *C. albicans*.

Figure 30: Isocitrate lyase (ICL) activity (mU/mg protein) in the different clinical isolates of *C. albicans*.

Figure 31: Malate synthase (M S) activity (mU/mg protein) in the different clinical isolates of *C. albicans*.

Figure 32: Malate dehydrogenase (MDH) activity in the different clinical isolates of *C. albicans*.

Figure 33: Citrate synthase (CS) activity in the different clinical isolates of *C. albicans*.

Figure 34: RAPD pattern for *Candida* species obtained with primer ALI-8.

Figure 35: RAPD pattern of *C. albicans* obtained with primer ALI-8.

Figure 36: RAPD pattern of *C. dubliniensis* obtained with primer ALI-8.

Figure 37: RAPD pattern of *C. dubliniensis* obtained with primer ALI-8.

Figure 38: RAPD pattern of *C. tropicalis* obtained with primer ALI-8.

Figure 39: RAPD pattern of *C. glabrata* obtained with primer ALI-8.

Figure 40: RAPD pattern of *C. parapsilosis* obtained with primer ALI-8.

Figure 41: RAPD pattern of *C. krusei* obtained with primer ALI-8.

Figure 42: RAPD pattern of *C. pelliculosa* obtained with primer ALI-8.

Figure 43: Direct Colony RAPD pattern of *C. tropicalis* ATCC 750.