Contents:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxv</td>
</tr>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Chapter I:</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Study area</td>
<td>6</td>
</tr>
<tr>
<td>1.1.1 Geographic location of Study area</td>
<td>6</td>
</tr>
<tr>
<td>1.1.2 Accessibility</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3 Topography and Vegetation</td>
<td>7</td>
</tr>
<tr>
<td>1.1.4 Drainage</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Review of literature (Previous work)</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Geological setting of Study area</td>
<td>16</td>
</tr>
<tr>
<td>1.4 Scope of work</td>
<td>18</td>
</tr>
<tr>
<td>1.5 Methodology</td>
<td>21</td>
</tr>
<tr>
<td>1.5.1 Field work</td>
<td>21</td>
</tr>
<tr>
<td>1.5.2 Laboratory work</td>
<td>21</td>
</tr>
<tr>
<td>Chapter II:</td>
<td></td>
</tr>
<tr>
<td>2. Lithology and Field relation</td>
<td>26</td>
</tr>
<tr>
<td>2.1 Khondalite</td>
<td>27</td>
</tr>
<tr>
<td>2.1.1 Field relations</td>
<td>28</td>
</tr>
<tr>
<td>2.2 Charnockite</td>
<td>28</td>
</tr>
<tr>
<td>2.3 Enderbite</td>
<td>28</td>
</tr>
<tr>
<td>2.4 Mafic granulites</td>
<td>29</td>
</tr>
<tr>
<td>2.4.1 Field relations</td>
<td>30</td>
</tr>
</tbody>
</table>
Chapter III:

3. Deformation history 48
 3.1 Structural elements 48
 3.2 Fold geometry and interference pattern 52
 3.3 Structural analysis 53
 3.4 Tectonic trend 58
 3.5 Synopsis 59

Chapter IV:

4. General Petrology 85
 4.1 Khondalite 86
 4.1.1 Mineralogy 86
 4.1.2 Petrography 86
 4.1.3 Reaction textures 90
 4.2 Massif-type charnockite 92
 4.2.1 Mineralogy 92
 4.2.2 Petrography 92
 4.2.3 Reaction textures 95
 4.3 Enderbite 96
 4.3.1 Mineralogy 96
 4.3.2 Petrography 96
 4.3.3 Reaction textures 97
Chapter V:

5. Chemical Petrology

5.1 Analytical data
5.2 Khondalite
5.3 Granitoids
5.4 Massif-type charnockites
5.5 Enderbite
5.6 Mafic granulite
5.6.1 Hornblende rich mafic granulite
5.6.2 Two-pyroxene granulite
5.7 Patchy pyroxene-granulite
5.8 Synopsis
Chapter VI:

6. Metamorphic history
 6.1 Analytical data
 6.2 Choice of solution models
 6.3 Metamorphic records from different lithologies
 6.3.1 Khondalite
 6.3.1.1 Mineral assemblage
 6.3.1.2 Mineral reactions
 6.3.1.3 Mineral chemistry
 6.3.1.4 P-T record
 6.3.2 Hornblende rich mafic granulite
 6.3.2.1 Mineral assemblage
 6.3.2.2 Mineral reactions
 6.3.2.3 Mineral chemistry
 6.3.2.4 P-T record
 6.3.3 Two-pyroxene granulite
 6.3.3.1 Mineral assemblage
 6.3.3.2 Mineral reactions
 6.3.3.3 Mineral chemistry
 6.3.3.4 P-T record
 6.4 P-T-t path
 6.5 Synopsis

Chapter VII:

7. Origin of charnockites
 7.1 Introduction
 7.2 Status of Jenapore charnockites
 7.3 Petrogenetic model
7.4 Review of experimental results

7.5 Testing of the model
 7.5.1 Massif-type chamockites are melt? 227
 7.5.2 Hornblende rich mafic granulites are restite? 230
 7.5.3 Two-pyroxene granulites are peritectic segregation? 233
 7.5.4 Enderbites are mixture of peritectic phase segregation and melt? 234

7.6 Trace element signature
 7.6.1 Trace element distribution 235
 7.6.1.1 Chamockites vs. hornblende rich mafic granulites 240
 7.6.1.1.1 Accessory phase control 242
 7.6.1.2 Chamockites vs. two-pyroxene granulites 245
 7.6.1.2.1 Accessory phase control 246
 7.6.1.3 Chamockites vs. enderbites 247
 7.6.1.3.1 Accessory phase control 248
 7.7 Rare Earth Elements signatures 249

7.8 Synopsis 253

Chapter VIII:

8. Origin of granites
 8.1 Introduction 278
 8.2 Status of Jenapore granitoids 280
 8.3 Petrogenetic model 283
 8.4 Review of experimental results 285
 8.5 Leptynites and leucogranites are partial melts and characteristics of their source rocks. 289
 8.6 Nature of mica dehydration melting reactions 292
 8.7 P, T and fO2 condition of melting 297
8.8 Trace element signature
 8.8.1 Trace element distribution
 8.8.1.1 Accessory phase control
 8.9 Synopsis

Chapter IX:

9. Conclusion

References

Acknowledgements