List of Figures

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Geological map of Jharkhand-Orissa region, India showing the study areas</td>
<td>12</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic diagram of the evolution of the Singhbhum craton as proposed by Nelson et al., 2014</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>Geological map of the Gandhamardan hill area, showing the locations of iron ore mineralization.</td>
<td>65</td>
</tr>
<tr>
<td>2.2</td>
<td>(A) Cross section across Deposit No. 9 (Donra; E-W section) of the Gandhamardan Hill showing different lithomembers. (B) Schematic cross-section of Gandhamardan Hill showing East-West trending vertical to subvertical faults formed due to vertical sagging of the volcaniclastic beds.</td>
<td>66</td>
</tr>
<tr>
<td>2.3</td>
<td>General stratigraphic column of the iron-ore and BIF bearing succession of Gandhamardan Hill.</td>
<td>67</td>
</tr>
<tr>
<td>2.4</td>
<td>(A) Filed photograph of lava flows from the Gandhamardan volcanic sequence. Individual flows are marked by L1, L2 etc. and separated by a distinct vesicular zone found at the top of each flow. (B) Field photograph of pyroclastic flows at the top of the volcanic and volcaniclastic succession.</td>
<td>68</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical classification of basal volcanic rocks. TAS diagram of Le Bas et al. (1986) and Le Maitre (2002).</td>
<td>69</td>
</tr>
<tr>
<td>2.6</td>
<td>Binary diagrams of different major element oxides with respect to SiO2.</td>
<td>70</td>
</tr>
<tr>
<td>2.7</td>
<td>Binary diagrams of different major element oxides with respect to MgO.</td>
<td>71</td>
</tr>
<tr>
<td>2.8</td>
<td>Al2O3–Fe2O3(t)+TiO2-MgO diagram (Jensen 1976) for the Gandhamardan basal volcanics.</td>
<td>72</td>
</tr>
<tr>
<td>2.9</td>
<td>FMA diagram for Gandhamardan igneous rock suite showing typical tholeiitic nature.</td>
<td>73</td>
</tr>
<tr>
<td>2.10</td>
<td>Classification of subalkali and alkali basalts for the mafic samples using Zr vs. P2O5 diagram (Pearce, 1975).</td>
<td>74</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Classification of Gandhamardan volcanic rocks; Winchester and Floyd (1977).</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Chondrite-normalized REE patterns of Gandhamardan basaltic andesite samples.</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>Plots of TiO$_2$-K$_2$O-P$_2$O$_5$ discrimination diagram (after Pearce et al., 1975) showing plots of Malangtoli basalts in OFB Field.</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>MgO-FeO$_2$-Al$_2$O$_3$ discrimination diagram (after Pearce et al., 1977).</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>The MnO - TiO$_2$ - P$_2$O$_5$ discrimination diagram (after Mullen, 1983).</td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td>A Zr-Nb-Y discrimination diagram (Meschede, 1986).</td>
<td></td>
</tr>
<tr>
<td>2.18</td>
<td>In the zirconium-zirconium/yttrium discrimination diagram (after Pearce and Cann, 1973).</td>
<td></td>
</tr>
<tr>
<td>2.19</td>
<td>(A) A Ti/100-Zr-Y*3 triangular discrimination diagram showing how the Gandhamardan basal volcanic samples plot along all the fields except field ‘A’ (after Pearce and Cann, 1973). (B) Ti/100 – Zr – Sr/2 discrimination diagram (after Pearce and Cann, 1973).</td>
<td></td>
</tr>
<tr>
<td>2.20</td>
<td>Discrimination diagrams based upon Ti – Zr variations. (A) Linear Scale (after Pearce and Cann, 1973); (B) Log scale (after Pearce, 1982) showing the fields of volcanic-arc basalt, MORB and Within-Plate Basalt.</td>
<td></td>
</tr>
<tr>
<td>2.21</td>
<td>La–Y–Nb diagram of Cabanis & Lecolle (1989).</td>
<td></td>
</tr>
<tr>
<td>2.23</td>
<td>Statistical evaluation of the A. F1-F2 discriminant function diagram and B. F2-F3 discriminant function diagram after Pearce 1976.</td>
<td></td>
</tr>
<tr>
<td>2.24</td>
<td>(A) Zr/Y plotted against Ti/Y for the Gandhamardan basalts and andesitic basalts. This is an adaptation of Figure 3 of Pearce and Cann (1973). (B) Zr/Sr plotted against Ti/Sr for the studied volcanic suite.</td>
<td></td>
</tr>
</tbody>
</table>
| 2.25 | Different discrimination diagrams after Gönçüoglu et al. (2010). (a) and (b) Variations observed in TiO$_2$ and Nb against Zr display difference source features of the studied samples. (c) Ti/V vs. Y/Nb discrimination diagram. (d) and (e) Variation of Ce/Y and Y/Nb against Zr/Nb for the studied samples. N-MORB and OIB compositions are from Sun and McDonough (1989). Fields in all the
discrimination diagrams for the OIB, E-MORB, N-MORB and SSZ-type Tethyan basaltic rocks are taken from Maheo et al. (2004), Saccani and Photiades (2005) and Aldanmaz et al. (2008).

2.26 Discrimination diagrams for the tectonic setting of Gandhamardan volcanic rocks.
A. Nb/Th versus Nb diagram; B. La/Nb versus La diagram and C. Ba/Nb versus Th/Nb diagram. (Li, 1993); D. Diagram of La/Nb versus Ba/Nb ratios for volcanic rocks of the study area after Jahn et al. (1999)

2.27 Th/Yb versus Ta/Yb ratio plot from Pearce (1982, 1983), which provides an immobile element method of identifying arc lavas and their volcanic series.

2.28 Variation diagrams for basal volcanics of Gandhamardan Region.
A. Th/Nb versus Ce/Nb diagram (after Saunders and Tarney, 1991).
B. Y versus La/Nb diagram (after Floyd et al., 1991).
C. Variation of Nb/Yb against Th/Yb after Pearce and Peate, 1995.
D. Cr versus Y log plot after Pearce, 1982. MORB: mid-ocean basalt, WPB: within plate basalt and VAB: volcanic arc basalt.

2.29 Ce/Zr versus Ba/Zr diagram Precambrian volcanic rocks of Gandhamardan Hill Region, with graphical range of mid-ocean ridge basalts, back-arc basin basalts and island-arc basalts and andesites and fields of N-MORB and oceanic island basalt of Saunders and Tarney (1991).

2.30 Ti versus V plot (after Shervais; 1982) showing the plotting of the investigated palæo lava flows in the base of the Gandhamardan Hill region and surrounding areas.

2.31 Statistical evaluation of Gandhamardan volcanics on major-element based discriminant function DF1–DF2 discrimination diagrams (Agrawal et al.2004) for island arc basalt (IAB), continental rift basalt (CRB), ocean-island basalt (OIB) and mid-ocean ridge basalt (MORB) (a) four-groups IAB-CRB-OIB-MORB diagram; (b)three groups IAB-CRB-OIB diagram; (c)three-groups IAB-OIB-MORB diagram; and (d)three-groups CRB-OIB-MORB diagram.

2.32 Statistical evaluation of Gandhamardan volcanics on discrimination diagrams based on natural logarithm transformation of trace-element ratios discriminant function DF1-DF2 (Agrawal et al.2008) for island arc basalt (IAB), continental rift basalt (CRB), ocean island basalt (OIB) and mid-ocean ridge basalt (MORB). (a) four-groups (IAB-CRB+OIB-MORB)\text{t1} diagram; (b) three-groups (IAB-CRB-OIB)\text{t1} diagram; (c) three-groups (IAB-OIB-MORB)\text{t1} diagram; and (d) three-groups (CRBOIB-MORB)\text{t1} diagram.
2.33 Exposure sandstone showing cross lamination in one face and plane lamination in another face high angle to the previous one.

2.34 Photomicrograph of the basal sandstone-tuff sequence of Gandhamardan BIF-Iron-Ore succession showing different textural elements. (A) Rounded chert fragments (marked with arrow) in sandstone (B) Well rounded K-feldspar grains surrounded by quartz and chert grains (C) Rounded iron-ore grains in sandstone (D) Syntaxial overgrowth (marked with arrows) of quartz filling up the interstitial spaces of grains. (E) Pyroclastic materials and glass fragments of volcanic origin mixed with unsorted rounded to subrounded quartz and feldspar. (F) Broken glass shreds with fragmented micro-vesicle walls (marked with arrow) and pumiceous glassy fragments in cryptocrystalline dark-coloured matrix of tuff (G) Amygdular filling in tuff. (H) Sedimentary flow mixed with tuffaceous materials in the boundary of tuff layer showing a regime of mixed environment.

2.35 Intercalations of thinly laminated siltstone and massive chert band within volcanic flows of Gandhamardan Hill. (A) Siltstone showing graded beds; (B) Siltstone overlies the massive mudrock and chert bed. The base of the siltstone is loaded and convoluted.

2.36 Chemical classification of basal Tuff
(A) TAS diagram of Le Bas et al. (1986) and Le Maitre (1989).
(B) Change of SiO2 with respect to Zr/TiO2 (after Winchester and Floyd, 1977)
(C) Classification of the studied tuff beds in the Nb -Zr diagram of Leat et al. (1986).
(D) Zr/Ti vs. Nb/Y diagram of Winchester and Floyd (1977)

2.38 Classifications of the studied tuff beds within tectono-magmatic discrimination diagrams after Pearce et al., 1984. (A) Nb-Y discrimination diagram. (B) Rb-(Y+Nb) discrimination diagram. Classification of the examined tuff beds within the tectono-magmatic discrimination diagrams from Harris et al. (1986). (C) (Rb/Zr)-SiO2 discrimination diagram. (D) Ternary (Rb/30)-Hf-(Ta*3) diagram. Further explanations are given in the text.

2.39 Chondrite normalized spider diagram of tuff indicating prominent LREE enrichment and Eu and Tm anomaly.

2.40 C1-Chondirte multielement spider diagram of Tuff.
2.41 Mesoscopic to exposure scale view of banded iron-formation, the protolith of Gandhamardan Hill iron ore deposit.

2.42 Mineralised BIF. The arrows indicate caught-up of jasper fragments within iron oxide rich bands.

2.43 Growth of secondary microplaty hematites (H₂) around primary hematite grains (H₁).

2.44 Mineralized BIF showing non-parallel arrangement of jaspery layers.

2.45 A. Photomicrograph showing martite rich bands alternate with cryptocrystalline jasper band in normal BIF.
B. Cryptoplaty hematite grows as needles (marked by arrows) in jasper layers observed in plane polarised light.
C. Formation of microplaty hematites on martite grains. Closer view under cross nicols.
D. Mineralised BIF between cross nicols. Thick layers of martite defines the iron-oxide bands of mineralised BIF.
E. Microplaty hematites are growing along the margin of martite grains in mineralised BIF, under cross nicols.
F. Growth of microplaty hematite along the dissolution cavities retaining the shape early formed magnetite, observed in mineralised BIF, under cross nicols.
G. Massive hematite grains within mineralised BIF, under cross nicols.
H. Continuous growth of massive hematite due to coalescence of microplaty hematite within mineralized BIF, under cross nicols; G and H lies at the contact where the mineralized BIF grades to an ore.

2.46 Plots of average crust normalized major elements of the studied banded iron-formations and the average values of oxide facies iron-formations are from Klein and Beukes (1989).

2.47 Cr/MgO, Zn/Cr, Zn/V and Cr/V plots of oxide phases of the banded iron-formations.

2.48 Zr/Cr, Th/Cu, Zr/V and Th/V plots of oxide phases of the banded iron-formations.

2.49 PASS-normalized REE pattern of oxide phases of the studied banded iron-formations.

2.50 Plot of (Ce/Ce*)PAAS vs. (Pr/Pr*)PAAS (after Bau and Dulski, 1996) for the Gandhamardan Hill BIF.

2.51 PAAS normalized plot of Ce/Ce* vs. Eu/Eu* of Gandhamardan BIF showing strong positive Eu anomaly and negative Ce anomaly.

2.52 Plot of chondrite-normalized Sm/Yb and Eu/Eu* for Gandhamardan BIFs.
2.53 Elemental ratio plots for Gandhamardan BIF with two-component conservative mixing lines for Eu/Sm, Sm/Yb, and Y/Ho:
(a) Y/Ho versus Eu/Sm; (b) Y/Ho versus Sm/Yb and (c) Sm/Yb as a function of Eu/Sm. The general trend of studied samples follows the trends of Isua IF.

2.54 Summary of major element compositions of Gandhamardan BIF.
A. Fe-Mn-Al (wt%) ternary diagram discriminating between hydrothermal and non-hydrothermal end members for modern marine ferromanganese deposits (Bostrom, 1973). Gandhamardan BIFs plot within the hydrothermal field. Also shown are fields for hydrothermal and non-hydrothermal sediments as determined by Bostrom (1973); metalliferous sediments from the East Pacific Rise (EPR), (Bostrom, 1973), Deep Sea Drilling Project (DSDP) Leg 31 (Bonatti et al., 1979),umberas associated with Cyprus massive sulphide deposits (Robertson and Hudson, 1973) and oceanic sediments (Dymond et al., 1973; Toth, 1980).

B. Composition of Gandhamardan BIF and mineralised BIF in terms of Fe/Ti versus Al/Al+Fe+Mn (Boström, 1973). Curve represents mixing of East Pacific Rise sediment with terrigenous and pelagic sediment (modified from Barrett, 1981; Wonder et al., 1988; Peter et al., 2003) estimating the relative contribution from the hydrothermal input.

2.55 Ratio of Si/Al in the Gandhamardan BIF as compared to ratios from marine sediments that are hydrothermal, hydrogenous-detrital, or detrital-diagenetic in origin (modified modified after Wonder et al., 1988).

2.56 ΣREE vs. Co+Cu+Ni plots of the oxide phases of the banded iron-formations. Note the samples fall close to the field of hydrothermal deposits.

2.57 Composition of Gandhamardan BIF plotted within the Precambrian field (after Govett 1966).

2.58 Composition of Gandhamardan BIF plotted within the Precambrian field (after Lepp and Goldich 1964).

2.59 PAAS-normalised Eu-anomalies and Pr/Yb ratios for the Gandhamardan BIFs. Fields of 3.7 Ga Isua BIF (Frei and Polat, 2007), the 2.9 Ga Pongola BIF (Alexander et al., 2008) are also marked with different colours All the samples of Gandhamardan show characteristic seawater LREE depletion relative to HREEs, and positive hydrothermal-derived Eu-anomalies.

2.60 Plots of Gandhamardan BIF where Pr/YbPAAS is a measure of LREE
depletion relative to HREEs and Y/Ho reflect the extent of Mn oxide cycling (Planavsky et al., 2010). The BHJs of the study area indicates the age as Archaean-early Pleoproterozoic.

2.61 Schematic model for the evolution of the Gandhamardan basin.
A. Formation of back-arc basin on continental landmass
B. Enlargement of Basin through rifting and emplacement of basic to intermediate submarine volcanic flows with siliciclastic and pyroclastic sediments.
C. Deposition of banded iron-formation during the pauses in volcanic activity and clastic sedimentation.

3.2 World distribution of iron ore after Beukes et al., 2002.

4.1 Field photograph showing iron ore is underlain and overlain by banded iron-formations, Donra mine, along the western slope of the Gandhamardan hill.

4.2 Fault controlled mineralization in Gandhamardan ironore deposit. A. Unusual subvertical ore concentration zone follows the orientation of a fault; B. Vertical ore body near to a vertical fault establishes the relation between fault and ore zonation.

4.3 Field photograph of different mine face. A. Donra Mine (Deposit No. 9); B. Jharna Mine; C. Jagar Mine; D. Putulpani Mine; E. Top ore and F. Section showing Top Ore mineralization.

4.4 Partly mineralized banded iron-formation core-stone within hard massive ore, Donra mine.

4.5 Hydrothermal breccia with fragments of jasper and open space filling iron ore veins. Jasper fragments show mismatching boundaries, Jagar mine.

4.6 Jasper fragments show upward decrease in clast size (normal grading) within a thick iron ore vein, Jagar mine.

4.7 Breccia filling ore in polished slab, showing replacement of jasper by iron ore. Arrow marks the defused contact between jasper fragment and iron ore.

4.8 Banded hard ore (at the top) with well preserved banding of the precursor banded iron-formation. Iron ore veins filling the fractures
and open spaces in hydrothermal breccia below the banded hard ore. Note replacement of the jasper fragments by iron ore in the breccia zone.

4.9 Blue dust with well maintained banding of the precursor banded iron-formation. Blue dust zone grades laterally to unaltered banded iron-formation.

4.10 Field photograph showing soft friable top ore with crude banding, and note the presence of altered core-stones.

4.11 Field photograph showing development of hard goethitic ore (GM) (Duricrust) with lateritic cover (L) above and flaky ore (FO) below.

4.12 Field and hand specimen photographs of Iron ore in Gandhamardan iron ore deposit. A. Massive Ore; B. Friable Ore; C. Laminated Ore or Biscuity Ore; D. Brecciated Ore; E. Flaky Ore; F. Brecciated/Breccia Filling Ore.

4.13 A. Photomicrograph showing martite (MT) and microplaty hematite (MPH) in hard massive ore.
B. Photomicrograph of hard banded ore showing alternate bands of microplaty hematite (MPH) and cryptoplaty hematite (CPH).
C. Photomicrograph of hard massive hematite ore showing equant martite (Mt) grains containing remnant magnetite (Mg).
D. Flaky ore under microscope, showing broken fragments of hard massive martite ore (M) cemented with microplaty hematite (MPH).
E. Photomicrograph of hard massive goethitic ore, showing replacement of martite (Mt) by goethite (G).
F. Photomicrograph of hard massive goethitic ore, showing isopachously developed goethitic cement (G) on martite (Mt) grains.

4.14 Progressive transformation of mineralized BIF to iron ore. Uniformly spread microplaty hematite rich BIF band is transformed into thick ore band through precipitation of iron oxide mineral from hydrothermal solution and later replacement and recrystallisation.

4.15 Photomicrograph showing BIF to Iron Ore transformation, with different textural manifestations.

4.16 Hard Martite Goethite (Slope) Ore. A. Martite-Goethite ore – goethite is formed due to precipitation in the pore space; B. Martite-Goethite-Microplaty Hematite ore – goethite is formed due to replacement of martite and microplaty hematite.

4.17 Photomicrograph of Top Ore. A. High porosity microplaty hematite ore - porosity is higher due to development of solution cavity. B. Martite-Microplaty Hematite-Goethite Ore - microplaty hematite replacing dolomite grains present in BIF. C. Martite-Goethite Ore. D.
Martite-Hematite-Goethite Ore forming Caries Structure - goethite replacing martite and formation of atol texture i.e. replacement of martite grains from core to periphery.

4.18 Late phase veins in ore.
A. High porosity martite-microplaty hematite ore with veins of microplaty hematite in slope ore.
B. High porosity martite-microplaty hematite ore with veins of microplaty hematite in top ore.
C. High porosity martite-microplaty hematite ore with microplaty hematite veins of different generations found in slope ore

4.19 PAAS normalized major element diagram of two types of ores.

4.20 PAAS normalized REE pattern for the BIFs and iron ores.

4.21 Chondrite normalized REE spider diagram for the BIFs and iron ores.

5.1 Schematic model for the evolution of the Gandhamardan Hill iron ore deposits.
A. Development of intrabasinal faults.
B. Upward migration of basinal iron rich fluid (ore brine) along faults.
C. Formation of iron ores through replacement of BIF adjacent to faults. The top ore might represent a hydrothermal ore body which recorded some change in chemistry and mineralogy due to near surface supergene processes.