Index of Figures

1. Introduction
1.1. Schematic diagram of cell cycle phases 5
1.2. Stages of mitosis in cell cycle 7
1.3. Oscillation of the expression of cyclin-CDK complexes in cell cycle 8
1.4. Destruction of B type cyclins 9
1.5. Pathway of checkpoint activation in cells during stress 12
1.6. Diagram of Schizosaccharomyces pombe 15
1.7. The life cycle of Schizosaccharomyces pombe 16
1.8. Cell size control in S. pombe 17
1.9. Structural distribution of actin microtubules during cell cycle of fission yeast 18
1.10. Formation of cyclin-CDK complex in different phases of cell cycle of S. pombe 20
1.11. G1 phase of cell cycle 23
1.12. S phase of cell cycle 24
1.13. Formation of pre-RC complex to initiate DNA replication in fission yeast 27
1.14. Activation of the MPF at G2 phase 29
1.15. M phase of cell cycle 32
1.16. Cytokinesis 34
1.17. Arrangement of checkpoint at different phases of cell cycle in S. pombe 35
1.18. Cell cycle regulation in mammals during DNA damage 37
1.19. Activation of DNA damage checkpoint in S. pombe 39
1.20. DNA damage leading to cell cycle arrest at G2-M phase 41
1.21. DNA replication checkpoint 42
1.22. Spindle assembly checkpoint 45
1.23. Spindle orientation checkpoint 46
1.24. Transcriptional regulation of cell cycle progression 50
1.25. Transcriptional regulation in *S. pombe* 54
1.26. Schematic diagram of ATF2 59
1.27. Structure of a bZIP dimer 59

3. Materials and methods
3.1 Cloning of pREP41Atf1bZIPΔ 89
3.2 Cloning of pREP41Pcr1 90
3.3 Cloning of pREP41 Atf1 (121-566) 91

4. Results and Discussions
4.1.1. Atf1 is important for controlling mitotic entry in *S. pombe* cells 96
4.1.2. Atf1 mediated mitotic acceleration is independent of Cdc25 activity and leads to abnormal mitosis 98
4.1.3. Atf1 regulates mitotic entry independent of Wee1 100
4.1.4. Atf1 targets the activation of Cdc2 to control mitotic entry 102
4.1.5. Effect of Atf1 over-expression on the growth of Cdc2 mutants 103
4.1.6. Atf1 over-expression leads to enhanced nuclear localization of Cdc2 through activation of *cdc13* transcription 106
4.1.7 The N–terminal domain is not required by Atf1 for mitotic acceleration 107
4.1.8. Increase in Cdc13 expression can rescue the temperature sensitivity of Δatf1 *cdc25-22* cells 108
4.1.9. Chromatin immuno-precipitation of Atf1-HA bound to *cdc13*+ promoter 110
4.1.10. Model for the role of Atf1 in mitotic entry 111
4.2.1. Change in the gene expression in wild type and
\(\Delta atf1 \) cells in unstressed condition 115
4.2.2. Schematic of the steps in microarray data analysis 117
4.2.3. Box whisker plot representing normalized
microarray expression from all samples 119
4.2.4. Correlation plot 121
4.2.5 The profile plot shows overall expression
patterns of the genes 122
4.2.6 PCA results on experimental conditions 123
4.2.7. Volcano plot 126
4.2.8. Heat map image 128
4.2.9. Up regulated pathways 130
4.2.10. Up regulated cell cycle pathways 131
4.2.11. Down regulated pathway 132
4.2.12 Cell cycle genes regulated by Atf1 133
4.2.14 Treatment of 10 mM and 20 mM HU in wild type
cells over-expressing pREP41 (\(\Phi \)) and
pREP41+Atf1 (Atf1) 135
4.3.1. Pcr1 over-expression delays G2-M transition 159
4.3.2. Pcr1 delays G1- S phase transition 161
4.3.3. Pcr1 over-expression leads to decrease in \(cdc13^+ \) level 162
4.3.4. Genetic interaction of Pcr1 with Cdc25 and Atf1 163
4.3.5. Chromatin immunoprecipitation of Atf1- HA bound
to Cdc13 promoter during Pcr1 over-expression 165

5. Conclusion
5.1 Role of Atf1 as a cell cycle accelerator 169
5.2 Dual role of Atf1 in \(S. pombe \) 170
5.3 Pcr1 mediated regulation of Atf1 at mitotic entry of \(S. pombe \) cell 172