Table of Contents

1. Introduction 1-43
 1.1. Bacteriophage 1-2
 1.2. Mycobacteriophage 3-13
 1.2.1. General properties of mycobacteriophages 3-8
 1.2.2. Application of Mycobacteriophage: Tool boxes for mycobacterial research 8-10
 1.2.3. Mycobacteriophages of this study 10-13
 1.3. Phage-Host Interaction 14-19
 1.3.1. Bacteriophage T7 kinase and induced modification of host RNA polymerase through phosphorylation 15-16
 1.3.2. Bacteriophage T5 Deoxynucleoside 5'-monophosphatase and degradation of Host DNA 16
 1.3.3. Bacteriophage T4 Pnkp and prevailing over “tRNA restriction”, a host defence mechanism 17-18
 1.3.4. Bacteriophage λ and its phosphatase 18-19
 1.4. Phosphoesterases 20-34
 1.4.1. Metallo-β-lactamases superfamily 21-23
 1.4.2. 2H superfamily 23-24
 1.4.3. HD hydrolase superfamily 24-25
 1.4.4. DHH hydrolase superfamily 25-26
 1.4.5. HAD or Haloacid dehalogenase superfamily 26-28
 1.4.6. HKD superfamily 28-29
 1.4.7. PHP superfamily 29-30
 1.4.8. Calcineurin-fold phosphoesterases superfamily 30-34
 1.5. Phosphoesterases of Mycobacteria and Mycobacteriophages 35-40
 1.5.1. Mycobacterial phosphatases 36-39
 1.5.2. Phosphatases of mycobacteriophages 39-40
 1.6. Objective 41-43

2. Materials & methods 44-68
 2.1. Materials 44-49
2.2. Methods 50-68

2.2.1. Bacterial and bacteriophage related protocols 50-51
2.2.2. DNA isolation protocols 51-58
2.2.3. RNA related protocols 58-60
2.2.4. Protein related protocols 60-65
2.2.5. Phosphatase Assay Protocols 65-66
2.2.6. Immunological Methods 66-67
2.2.7. Bioinformatics studies 67-68

3. Results 69-94

3.1. Phylogenetic Analysis of D29 Gp66 69-74

3.1.1. Identification of Gp66 orthologues 69-71
3.1.2. BLAST search for Gp66 orthologues 71-74

3.2. Biochemical Characterization of D29 Gp66 75-85

3.2.1. Cloning, Expression and Purification of D29 Gp66 75
3.2.2. General Phosphoesterase Assay 76
3.2.3. Protein Phosphatase Activity 76-77
3.2.4. Phosphoesterase activity with other substrates 77-78
3.2.5. Factors influencing for enzymatic activity 78-81
3.2.6. Activity with cyclic nucleotide phosphodiester 81-83
3.2.7. Mutational Analysis 83-85
3.2.8. Molecular weight (M_w) determination by gel filtration chromatography and confirmation by MALDI 85

3.3. Functional characterization of D29 Gp66 86-94

3.3.1. One step growth curve of D29 mycobacteriophage 86
3.3.2. Expression of Gp66 in phage infected cell 86-89
3.3.3. Over expression of gene 66 in M. smegmatis cells 89-90
3.3.4. Inhibition of Gp66 activity by the mutant 90
3.3.5. Understanding the functional role of Gp66 in vivo 91-92
3.3.6. Gp66 acts as a negative regulator for phage and host cell growth 92-94

4. Discussions 95-100

5. Conclusions 101-103

6. References 104-113

7. Publication 114