Books

Journals

Bolland S et al. SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunit. 8, 509-516, 1998.

Brombacher E et al. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate binding effector protein of *Legionella pneumophila*. J Biol Chem 284, 4846–4856, 2009.

Chakrabarti R et al. Phosphatidylinositol 4-phosphate 5-kinase 1α modulates ribosomal RNA gene silencing through its interaction with Histone H3 lysine 9 trimethylation and Heterochromatin Protein HP1-α. J.Biol. Chem. 10.1074/jbc.M114.633727, 2015

Franke TF et al. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science. 275 (5300), 665–8, 1997.

Holz RW et al. A pleckstrin homology domain specific for phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P2 as being important in exocytosis. J Biol Chem. 275, 17878–17885, 2000.

Hwang GW et al. A ubiquitin-proteasome system is responsible for the protection of yeast and human cells against methyl mercury. FASEB J. 16(7), 709-11, 2002

Li DM & Sun H. Tep1,encoded by a candidate tumour suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor β. Cancer Res. 57, 2124-2129, 1997.

Ling WLW et al. The use of permeabilized cells to investigate secretary granule biogenesis. Method. 16(2), 141-149, 1998.

Manna DN et al. Differential roles of phosphatidylserine, PtdIns(4,5)P(2), and PtdIns(3,4,5)P(3) in plasma membrane targeting of C2 domains - Molecular dynamics simulation, membrane binding, and cell translocation studies of the PKC alpha C2 domain." Journal of Biological Chemistry 283(38), 26047-26058, 2008

Moorhead AM et al. Multiple host proteins that function in Phosphatidylinositol 4 phosphate metabolism are recruited to the chlamydial inclusion. Infect Immun 78, 1990–2007, 2010

Morita Y et al. TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation. Mol Biol Cell. 16(11), 5433-44. 2005.

Muller S et al. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70, 1998.

Narkis G et al. Lethal contractural syndrome type 3 (LCCS3) is caused by a mutation in PIP5K1C, which encodes PIPKI gamma of the phophatidylinsitol pathway. Am J Hum Genet 81, 530–539, 2007

Okamura Y & Dixon JE. Voltagessensing phosphatase: its molecular relationship with PTEN. Physiology 26, 6–13, 2011.

Resnick AC et al. Inositol polyphosphate multikinase is a nuclear PI3kinase with transcriptional regulatory activity. Proc Natl Acad Sci USA 102, 12783–12788, 2005.

Sandal T. Molecular aspects of mammalian cell cycle and cancer. The Oncologist 7, 73-81, 2002.

Shona L et al. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-

Snider NT et al. Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation, J. Biol. Cell. 286, 2273-84, 2011.

Strahl BD et al. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci USA 96, 14967-14972, 1999.

Sugden B & Warren N. A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. J Virol, 63, 2644-2649, 1989

Suh HY et al. Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA. EMBO J 29: 496–504, 2010

Vance JE & Steenbergen R. Metabolism and functions of phosphatidylserine. Progress in Lipid Research. 44(4), 207-234, 2005

Yang F et al. Sumoylation of Kif18A plays a role in regulating mitotic progression. BMC Cancer. 15:197, 2015

Zhu Y et al. Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Proc Natl Acad Sci USA 107: 4699–4704, 2010