Table of Contents

Abstract of the thesis 11
List of Tables 13
List of figures 14

Introduction 18–28
1.1 The peptide bond 19
1.2 The cis peptide bond 20
1.3 The importance of cis peptide bond 21
1.4 The local versus global control of cis/trans isomerization around a peptide bond 21
1.5 The focus of the present study 22
1.6 An overview of the thesis 23

Tables & Figures 26

2. Synthesis Purification and Characterization of Peptides 29–89
2.1 Introduction 29
2.2 Synthesis and purification of PPX, XPA and XPY peptides 30
2.2.1 General considerations 30
2.2.2 Synthesis of PPX peptide series 31
2.2.3 Purification of PPX peptide series 33
2.2.4 Synthesis of XPA and XPY peptide series 34
2.2.5 Purification of XPA and XPY peptide series 36
2.3 Characterization of PPX, XPA and XPY peptides 36
2.4 Resonance assignment of PPX, XPA and XPY peptides 37
3. Mediated by CH−−π Interaction a Sequence
 Contiguous Aromatic Residue Stabilizes
 the Pro−cisPro Conformation 90–130

3.1 Introduction 90
 3.1.1 Peptidyl-prolyl bond and cis conformation 90
 3.1.2 Pro-Pro peptide bond conformation: A review on the
earlier work 92
 3.1.3 Unanswered questions 93

3.2 Materials and Methods 95
 3.2.1 Synthesis, purification and characterization of
 Ac-Pro-Pro-Xaa-NH$_2$ series of peptides 95
 3.2.2 1H NMR: Sample preparation and acquisition 95
 3.2.3 Analysis from a database of non-redundant
 protein structures 97

3.3 Results 98
 3.3.1 Four (cis/trans)-isomeric states of
 Ac−Pro−Pro−Xaa−NH2 98
 3.3.2 Relative population distribution of tt, tc, cc
 and ct isomeric states in PPX peptides 98
 3.3.3 Cis−trans equilibrium of PPH is pH-dependent 100
 3.3.4 Enthalpic and entropic contributions to the decrease
 in free energy of trans ⇔ cis isomerization equilibrium
 when Aro at Xaa in Pro−Pro−Xaa replaces NonAro 102
3.3.5 Interaction of aromatic ring with Cα−H of the N-terminal proline residue

3.3.6 Restriction of χ₁ of Aro in Pro−cisPro−Aro due to CH−π interaction

3.3.7 Direct evidence of CH−π interaction: Overhauser effect between aromatic ring protons and Cα−H of N-terminal proline in Pro−cisPro−Aro

3.3.8 Residence time of Cα−H−Aro CH−π interaction in Pro−cisPro−Aro

3.3.9 Cis/trans conformation of Pro−Pro in non-redundant protein structures

3.3.10 A comparative analysis of mechanisms that stabilize Aro−cisPro and Pro−cisPro−Aro

3.4 Conclusions and Implications

3.4.1 Pro−Pro−Aro is a new sequence motif that stabilizes the Pro−cisPro conformer

3.4.2 The effect of Xaa on cis/trans peptidyl-prolyl isomerization in Pro-Pro-Xaa: A thermodynamic scale

3.4.3 PPH is a pH-dependent cis/trans isomerization switch

3.4.4 An unprecedentedly tight CH−π interaction is operative in Pro−cisPro−Aro

3.4.5 The prolyl-prolyl cis-contents in peptide and proteins are correlated

Tables & Figures

4. Effect of C-capping Peptidyl-Prolyl Isomerization Hosts

Xaa−Pro by a Guest Aromatic Residue 131–173
4.1 Introduction

4.1.1 Earlier work on the influence of amino acids preceding a proline residue on the cis/trans peptidyl-prolyl isomerization 131

4.1.2 Approaching the problem exploiting the host-guest concept 133

4.2 Materials and Methods

4.2.1 Peptide Synthesis, Purification and Characterization 135

4.2.2 NMR spectroscopy 136

4.2.3 Database Analysis 136

4.3 Results

4.3.1 The cis–trans equilibrium for XPA peptides is similar to AXPAK peptides 138

4.3.2 XPY peptides show an enhanced cis-content with respect to XPA 138

4.3.3 Free energy of isomerization of Xaa–Pro in the presence of an aromatic and non-aromatic guest following it 139

4.3.4 Stronger the ring current felt by the Cα–H of Xaa, greater is the ΔΔG° 141

4.3.5 Enthalpic and entropic component in the ΔΔG° 142

4.3.6 Direct evidence of CH···π interaction from ROE cross-peaks 144

4.3.7 The spatial disposition of the Tyr side-chain in X–P–Y 145

4.3.8 The CH···π interacting microstate in X–cisP–Y 147

4.3.9 Pachler- and Creighton-occupancies are linearly related to each other 148

4.3.10 Why DPY, TPY, SPY and NPY are exceptions 150

4.3.11 Comparative population analysis of Xaa-cisPro-Aro in peptides and proteins 151
4.4 Conclusions and Implications

4.4.1 Modulation of cis-peptidyl-prolyl population in Pro-Tyr upon C-capping by amino acids

4.4.2 CH−π interaction present in the cis-coformation of XPY is enthalpy driven

4.4.3 The Crighton-occupancy of CH−π interaction microstate is correlated with Pachler Occupancy of g(−) rotameric state of Tyr for Xaa−cisPro−Tyr

4.4.4 Proton donating potential of Cα−H of amino acids is reflected in the experimentally observed CH−π interaction

4.4.5 Alternative interactions in trans state can compete the CH−π interaction in cis states

4.4.6 The cis-population of Xaa−cisPro−Aro motif in peptides and proteins are correlated

Tables & Figures

5. Exploring Pro−cisPro−Aro Motifs in Proteins

5.1 Introduction

5.2 Materials and Methods

5.2.1 Sequence conservation

5.2.2 Protein expression and purification

5.2.3 Functional Assay

5.2.4 Equilibrium and kinetic studies of protein unfolding studies

5.2.5 ATP binding

5.3 Results

5.3.1 Sequence conservation of PPY motif in tyrosinase (pdb code: 1wxc)

5.3.2 Sequence conservation of Pro−cisPro−Aro motif in known protein structures
5.3.2.1 PDB code: 1GSA 181
5.3.2.2 PDB code: 1V5V 182
5.3.2.3 PDB code: 1VKY 182
5.3.2.4 PDB code: 1X54 183
5.3.2.5 PDB code: 1MPG 184
5.3.2.6 PDB code: 1WXC 185
5.3.2.7 PDB code: 2VWS 185

5.3.3 The effect of perturbing of a conserved cisPro residue in E. coli GluRS 186
5.3.3.1 Structural studies of P72A mutant of E. coli GluRS 187
5.3.3.2 Equilibrium unfolding studies of P72A mutant of E. coli GluRS 188
5.3.3.3 Kinetic studies of unfolding of the P72A mutant of E. coli GluRS 189
5.3.3.4 Aminoacylation kinetics and ATP binding studies on the P72A mutant 193

5.4 Conclusions and Implications 195

Tables and Figures 197

References 213

List of Symbols and Abbreviations 223

Appendix I 225